def _inflate_conv_params(conv3d, state_dict_2d, module_name_2d, inflated_param_names):
"""Inflate a conv module from 2d to 3d.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the 2d model.
inflated_param_names (list[str]): List of parameters that have been inflated.
"""
weight_2d_name = module_name_2d + '.weight'
conv2d_weight = state_dict_2d[weight_2d_name]
kernel_t = conv3d.weight.data.shape[2]
new_weight = conv2d_weight.data.unsqueeze(2).expand_as(conv3d.weight) / kernel_t
conv3d.weight.data.copy_(new_weight)
inflated_param_names.append(weight_2d_name)
if getattr(conv3d, 'bias') is not None:
bias_2d_name = module_name_2d + '.bias'
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
inflated_param_names.append(bias_2d_name)
在这个上下文中,"Inflate"是指将一个2D的东西扩展或膨胀成一个3D的东西。
具体解释如下:
-
2D意味着只有两个维度,通常是宽和高。比如一张图像就是2D的。
-
3D意味着有三个维度,通常是宽、高和深度/时间。比如视频就是3D的,因为它除了宽和高,还有时间维度。
-
"Inflate"这个词在这里的含义就是将一个2D的东西,比如2D卷积核,通过某种方式扩展成3D的东西。
所以"Inflate a conv module from 2d to 3d"的意思就是,将一个2D卷积层的参数转换成一个3D卷积层的参数。这样做的目的通常是为了将一个2D的模型迁移到3D的领域,比如从图像分类转移到视频分类。
总之,在这个上下文中,"Inflate"指的就是从2D扩展到3D的过程。它是一种参数转换的技术,用于实现2D模型到3D模型的迁移。
这个函数的中文意思是"将一个 2D 卷积层膨胀成 3D 卷积层"。
具体来说:
这个函数的作用是将一个已经训练好的 2D 卷积层的参数转换成 3D 卷积层的参数。这种方法通常用于将 2D 模型迁移到 3D 领域,比如从图像分类模型迁移到视频分类模型。
由于 3D 卷积层比 2D 卷积层多了一个时间维度,因此需要对 2D 卷积层的参数进行扩展和转换,才能应用到 3D 模型中。这个函数就实现了这个转换过程,将 2D 卷积层的参数"膨胀"成 3D 卷积层的参数。
这样做的好处是可以利用在 2D 领域预训练好的模型参数,从而快速地将模型迁移到 3D 领域,节省训练成本和时间。
总之,这个函数是一种将 2D 模型参数转换成 3D 模型参数的技术手段,在实现 2D 到 3D 模型迁移时非常有用。
这个函数的功能是将一个2D卷积层的参数转换成3D卷积层的参数。
具体来说,它做了以下几件事:
- 从2D模型的状态字典(
state_dict_2d
)中获取对应2D卷积层的权重参数。 - 将2D权重参数扩展到3D权重参数的形状,方法是在通道维度上增加一个维度,并将值除以时间维度的大小(
kernel_t
)。这是因为3D卷积核的第三个维度表示时间维度,而2D卷积核没有这个维度。 - 将扩展后的3D权重参数拷贝到3D卷积层(
conv3d
)的权重参数中。 - 如果3D卷积层有偏置参数,则从2D模型的状态字典中获取对应的偏置参数,并拷贝到3D卷积层的偏置参数中。
- 将已经转换的参数名称添加到
inflated_param_names
列表中,以便后续检查。
总的来说,这个函数的作用是将一个2D卷积层的参数转换成对应的3D卷积层参数,以便在3D模型中使用2D模型的预训练权重。
conv3d (nn.Module): The destination conv3d module.
"conv3d (nn.Module): The destination conv3d module."这句话的中文意思是:
"conv3d (nn.Module): 目标 3D 卷积模块。"
这里的解释如下:
-
"conv3d"是一个参数名称,表示这个函数要处理的目标是一个 3D 卷积层模块。
-
"(nn.Module)"表示这个 3D 卷积层模块是 PyTorch 中的 nn.Module 类型。nn.Module 是 PyTorch 中定义神经网络层的基类。
-
"The destination conv3d module"指的是,这个 3D 卷积层模块是函数的目标,也就是要将某些参数拷贝或转换到这个 3D 卷积层中去。
总之,这句话的意思是,这个函数要处理的目标是一个 PyTorch 的 3D 卷积层模块,它是函数的目标对象,要对它进行某些参数的转换操作。
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
"state_dict_2d (OrderedDict): The state dict of pretrained 2d model."这句话的中文意思是:
"state_dict_2d (OrderedDict): 预训练 2D 模型的状态字典。"
这里的解释如下:
-
"state_dict_2d"是一个参数名称,表示这个函数要处理的是一个预训练 2D 模型的状态字典。
-
"(OrderedDict)"表示这个状态字典是一个有序的字典类型,也就是 Python 中的 OrderedDict。
-
"The state dict of pretrained 2d model"指的是,这个状态字典包含了一个预训练好的 2D 模型的所有参数。
总之,这句话的意思是,这个函数要处理的另一个输入是一个预训练 2D 模型的状态字典,这个状态字典是一个有序字典类型,里面包含了 2D 模型的所有参数。
module_name_2d (str): The name of corresponding conv module in the 2d model.
"module_name_2d (str): The name of corresponding conv module in the 2d model."这句话的中文意思是:
"module_name_2d (str): 2D 模型中对应卷积模块的名称。"
这里的解释如下:
-
"module_name_2d"是一个参数名称,表示这个函数要处理的是 2D 模型中某个卷积模块的名称。
-
"(str)"表示这个参数是一个字符串类型。
-
"The name of corresponding conv module in the 2d model"指的是,这个参数表示 2D 模型中与当前 3D 卷积模块对应的卷积模块的名称。也就是说,2D 模型和 3D 模型中有对应的卷积模块,这个参数就是表示 2D 模型中那个模块的名称。
总之,这句话的意思是,这个函数要处理的另一个输入是 2D 模型中与当前 3D 卷积模块对应的卷积模块的名称,这个名称是一个字符串类型。
inflated_param_names (list[str]): List of parameters that have been inflated.
"inflated_param_names (list[str]): List of parameters that have been inflated."这句话的中文意思是:
"inflated_param_names (str 列表): 已经被膨胀的参数列表。"
解释如下:
-
"inflated_param_names"是一个参数名称,表示这个函数要处理的是一个已经被"膨胀"的参数列表。
-
"(list[str])"表示这个参数是一个字符串类型的列表。也就是说,这个参数是一个存放字符串的列表。
-
"List of parameters that have been inflated"指的是,这个列表中包含了那些经过"膨胀"操作的参数名称。所谓"膨胀",就是指将 2D 卷积层的参数转换成 3D 卷积层的参数。
总之,这句话的意思是,这个函数要处理的一个输出是一个列表,里面包含了所有已经被"膨胀"(从 2D 转换到 3D)的参数名称。
weight_2d_name = module_name_2d + '.weight'
conv2d_weight = state_dict_2d[weight_2d_name]
kernel_t = conv3d.weight.data.shape[2]new_weight = conv2d_weight.data.unsqueeze(2).expand_as(conv3d.weight) / kernel_t
conv3d.weight.data.copy_(new_weight)
inflated_param_names.append(weight_2d_name)
这段代码描述了如何将一个 2D 卷积层的参数膨胀成一个 3D 卷积层的参数的过程。具体来说:
-
weight_2d_name = module_name_2d + '.weight'
:- 构建了 2D 卷积层权重参数的名称。通过拼接
module_name_2d
和'.weight'
,得到了 2D 模型中对应卷积层的权重参数名称。
- 构建了 2D 卷积层权重参数的名称。通过拼接
-
conv2d_weight = state_dict_2d[weight_2d_name]
:- 从 2D 模型的状态字典
state_dict_2d
中,取出了对应 2D 卷积层的权重参数。
- 从 2D 模型的状态字典
-
kernel_t = conv3d.weight.data.shape[2]
:- 获取了 3D 卷积层的时间维度大小,也就是卷积核的深度。
-
new_weight = conv2d_weight.data.unsqueeze(2).expand_as(conv3d.weight) / kernel_t
:- 将 2D 卷积层的权重参数
conv2d_weight
进行膨胀操作:- 首先使用
unsqueeze(2)
在维度 2 上添加一个维度,将 2D 权重参数变成了 3D。 - 然后使用
expand_as(conv3d.weight)
将新的 3D 权重参数扩展到和 3D 卷积层权重参数conv3d.weight
相同的大小。 - 最后除以
kernel_t
,对新的 3D 权重参数进行归一化处理。
- 首先使用
- 将 2D 卷积层的权重参数
-
conv3d.weight.data.copy_(new_weight)
:- 将计算得到的新的 3D 权重参数
new_weight
拷贝到 3D 卷积层的权重参数conv3d.weight
中。
- 将计算得到的新的 3D 权重参数
-
inflated_param_names.append(weight_2d_name)
:- 将 2D 卷积层的权重参数名称
weight_2d_name
添加到inflated_param_names
列表中,记录已经被膨胀的参数。
- 将 2D 卷积层的权重参数名称
总的来说,这段代码实现了将 2D 卷积层的权重参数转换成 3D 卷积层的权重参数的过程。这个过程被称为"膨胀"(inflate),是将 2D 模型迁移到 3D 模型的一个常用技术。
if getattr(conv3d, 'bias') is not None:
bias_2d_name = module_name_2d + '.bias'
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
inflated_param_names.append(bias_2d_name)
这段代码处理了如何将 2D 卷积层的偏置参数膨胀成 3D 卷积层的偏置参数:
-
if getattr(conv3d, 'bias') is not None:
- 这个条件语句检查了 3D 卷积层
conv3d
是否有偏置参数。如果有偏置参数,则执行以下操作。
- 这个条件语句检查了 3D 卷积层
-
bias_2d_name = module_name_2d + '.bias'
- 构建了 2D 卷积层偏置参数的名称。与之前构建权重参数名称的方式类似,通过拼接
module_name_2d
和'.bias'
。
- 构建了 2D 卷积层偏置参数的名称。与之前构建权重参数名称的方式类似,通过拼接
-
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
- 从 2D 模型的状态字典
state_dict_2d
中,取出对应 2D 卷积层的偏置参数。 - 然后将这个偏置参数直接拷贝到 3D 卷积层
conv3d
的偏置参数中。
- 从 2D 模型的状态字典
-
inflated_param_names.append(bias_2d_name)
- 将 2D 卷积层的偏置参数名称
bias_2d_name
添加到inflated_param_names
列表中,记录已经被膨胀的参数。
- 将 2D 卷积层的偏置参数名称
总的来说,这段代码处理了 2D 卷积层偏置参数向 3D 卷积层偏置参数的映射。如果 3D 卷积层有偏置参数,就将 2D 卷积层的偏置参数直接拷贝过来。这样做可以确保 3D 模型在继承 2D 模型参数时,偏置参数也能够正确映射。