demo/demo_skeleton.py记录(一)

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import cv2
import mmcv
import numpy as np
import os
import os.path as osp
import shutil
import torch
import warnings
from scipy.optimize import linear_sum_assignment

from pyskl.apis import inference_recognizer, init_recognizer

try:
    from mmdet.apis import inference_detector, init_detector
except (ImportError, ModuleNotFoundError):
    def inference_detector(*args, **kwargs):
        pass

    def init_detector(*args, **kwargs):
        pass
    warnings.warn(
        'Failed to import `inference_detector` and `init_detector` from `mmdet.apis`. '
        'Make sure you can successfully import these if you want to use related features. '
    )

try:
    from mmpose.apis import inference_top_down_pose_model, init_pose_model, vis_pose_result
except (ImportError, ModuleNotFoundError):
    def init_pose_model(*args, **kwargs):
        pass

    def inference_top_down_pose_model(*args, **kwargs):
        pass

    def vis_pose_result(*args, **kwargs):
        pass

    warnings.warn(
        'Failed to import `init_pose_model`, `inference_top_down_pose_model`, `vis_pose_result` from '
        '`mmpose.apis`. Make sure you can successfully import these if you want to use related features. '
    )


try:
    import moviepy.editor as mpy
except ImportError:
    raise ImportError('Please install moviepy to enable output file')

FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.75
FONTCOLOR = (255, 255, 255)  # BGR, white
THICKNESS = 1
LINETYPE = 1

import argparse
import cv2
import mmcv
import numpy as np
import os
import os.path as osp
import shutil
import torch
import warnings
from scipy.optimize import linear_sum_assignment

from pyskl.apis import inference_recognizer, init_recognizer

这部分是导入所需的Python模块和库。argparse用于解析命令行参数,cv2是OpenCV库,mmcv是一个多媒体计算视觉工具箱,numpy是用于数值计算的库,osos.path用于文件和路径操作,shutil用于文件和目录操作,torch是PyTorch深度学习库,warnings用于警告处理,linear_sum_assignment是SciPy库中的一个函数,用于求解最优分配问题。

pyskl.apis是一个自定义模块,其中包含了inference_recognizerinit_recognizer函数的定义。这些函数可能是用于加载和推理目标识别模型的API函数。

这段代码的作用是导入所需的库和模块,准备进行目标识别推理的环境。

try:
    from mmdet.apis import inference_detector, init_detector
except (ImportError, ModuleNotFoundError):
    def inference_detector(*args, **kwargs):
        pass

    def init_detector(*args, **kwargs):
        pass
    warnings.warn(
        'Failed to import `inference_detector` and `init_detector` from `mmdet.apis`. '
        'Make sure you can successfully import these if you want to use related features. '
    )

 

这段代码中的try-except块用于尝试导入mmdet.apis模块中的inference_detectorinit_detector函数,如果导入失败,则定义了两个空函数,然后发出警告。

下面是对每一行代码的详细解释:

try:
    from mmdet.apis import inference_detector, init_detector

尝试从mmdet.apis模块中导入inference_detectorinit_detector函数。

except (ImportError, ModuleNotFoundError):

如果导入出现ImportErrorModuleNotFoundError异常,执行以下操作:

def inference_detector(*args, **kwargs):
        pass

    def init_detector(*args, **kwargs):
        pass

定义两个空函数inference_detectorinit_detector,这些函数不执行任何操作,只是占位符。

warnings.warn(
        'Failed to import `inference_detector` and `init_detector` from `mmdet.apis`. '
        'Make sure you can successfully import these if you want to use related features. '
    )

发出警告,提示无法导入mmdet.apis模块中的inference_detectorinit_detector函数,提醒用户确保能够成功导入这些函数,以便使用相关功能。

这段代码的目的是在导入mmdet.apis模块中的函数时,如果导入失败,则定义空函数并发出警告。这样做是为了在无法使用mmdet库时,代码可以继续执行,避免因导入失败而导致的错误。

try:
    from mmpose.apis import inference_top_down_pose_model, init_pose_model, vis_pose_result
except (ImportError, ModuleNotFoundError):
    def init_pose_model(*args, **kwargs):
        pass

    def inference_top_down_pose_model(*args, **kwargs):
        pass

    def vis_pose_result(*args, **kwargs):
        pass

    warnings.warn(
        'Failed to import `init_pose_model`, `inference_top_down_pose_model`, `vis_pose_result` from '
        '`mmpose.apis`. Make sure you can successfully import these if you want to use related features. '
    )

这段代码中的try-except块用于尝试导入mmpose.apis模块中的inference_top_down_pose_modelinit_pose_modelvis_pose_result函数,如果导入失败,则定义了三个空函数,并发出警告。

下面是对每一行代码的详细解释:

try:
    from mmpose.apis import inference_top_down_pose_model, init_pose_model, vis_pose_result

尝试从mmpose.apis模块中导入inference_top_down_pose_modelinit_pose_modelvis_pose_result函数。

except (ImportError, ModuleNotFoundError):

如果导入出现ImportErrorModuleNotFoundError异常,执行以下操作:

def init_pose_model(*args, **kwargs):
        pass

    def inference_top_down_pose_model(*args, **kwargs):
        pass

    def vis_pose_result(*args, **kwargs):
        pass

定义三个空函数init_pose_modelinference_top_down_pose_modelvis_pose_result,这些函数不执行任何操作,只是占位符。

warnings.warn(
        'Failed to import `init_pose_model`, `inference_top_down_pose_model`, `vis_pose_result` from '
        '`mmpose.apis`. Make sure you can successfully import these if you want to use related features. '
    )

发出警告,提示无法导入mmpose.apis模块中的init_pose_modelinference_top_down_pose_modelvis_pose_result函数,提醒用户确保能够成功导入这些函数,以便使用相关功能。

这段代码的目的是在导入mmpose.apis模块中的函数时,如果导入失败,则定义空函数并发出警告。这样做是为了在无法使用mmpose库时,代码可以继续执行,避免因导入失败而导致的错误。

try:
    import moviepy.editor as mpy
except ImportError:
    raise ImportError('Please install moviepy to enable output file')

这段代码尝试导入moviepy.editor模块,如果导入失败则抛出ImportError并显示安装moviepy以启用输出文件的错误信息。

下面是对每一行代码的详细解释:

try:
    import moviepy.editor as mpy

尝试导入moviepy.editor模块,并将其命名为mpy

except ImportError:
    raise ImportError('Please install moviepy to enable output file')

如果导入出现ImportError异常,抛出新的ImportError异常,并显示错误信息"Please install moviepy to enable output file",提示用户安装moviepy库以启用输出文件的功能。

FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.75
FONTCOLOR = (255, 255, 255)  # BGR, white
THICKNESS = 1
LINETYPE = 1

定义了一些常量,用于在后续代码中设置文本标注的字体、大小、颜色、线条宽度等属性。

这段代码的目的是尝试导入moviepy.editor模块,如果导入失败,则抛出错误并要求用户安装moviepy库以启用输出文件的功能。

moviepy.editor是干什么用的?

moviepy.editor是一个用于编辑视频的Python库。它提供了一组功能强大的工具,用于读取、处理、编辑和合成视频文件。

使用moviepy.editor库,你可以进行以下操作:

  1. 视频剪辑:从视频文件中选择指定的时间段或帧数,创建一个新的视频剪辑。
  2. 视频合并:将多个视频文件合并为一个视频。
  3. 视频裁剪:裁剪视频的尺寸,以去除不需要的边缘或调整视频的宽高比。
  4. 视频转码:将视频文件转换为不同的编码格式或容器格式。
  5. 视频特效:添加各种特效,如文本标注、图像叠加、过渡效果等。
  6. 视频合成:将视频、音频和图像元素组合在一起,创建一个新的复合视频。
  7. 视频处理:应用各种图像处理操作,如调整亮度、对比度、色彩等。
  8. 视频导出:将编辑后的视频保存为新的视频文件。

moviepy.editor库简化了视频编辑过程,提供了易于使用的高级接口,并与其他Python科学计算库(如NumPy和Pillow)集成,使视频编辑变得更加灵活和可扩展。

参考:

pyskl代码解析(3)_pyskl 源码-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值