def pose_inference(args, frame_paths, det_results):
model = init_pose_model(args.pose_config, args.pose_checkpoint,
args.device)
ret = []
print('Performing Human Pose Estimation for each frame')
prog_bar = mmcv.ProgressBar(len(frame_paths))
for f, d in zip(frame_paths, det_results):
# Align input format
d = [dict(bbox=x) for x in list(d)]
pose = inference_top_down_pose_model(model, f, d, format='xyxy')[0]
ret.append(pose)
prog_bar.update()
return ret
代码创建一个空列表 ret
,用于存储每帧图像的姿势估计结果。
也就是说函数返回值的数据类型是列表
zip(frame_paths, det_results):函数语法
zip(frame_paths, det_results)
是一个内置函数 zip()
的调用,它用于将两个或多个可迭代对象进行配对组合,返回一个迭代器,每次迭代时返回一个元组。
具体的语法如下:
zip(iterable1, iterable2, ...)
iterable1
、iterable2
等参数是可迭代对象,可以是列表、元组、字符串等。- 函数返回一个迭代器,每次迭代时返回一个元组,元组中包含了传入的可迭代对象中对应位置的元素。
在这个特定的代码中,frame_paths
和 det_results
是两个可迭代对象,分别代表图像帧路径和目标检测结果。zip(frame_paths, det_results)
将它们进行配对,每次迭代时返回一个包含两个元素的元组,第一个元素是 frame_paths
中的一个图像帧路径,第二个元素是 det_results
中对应位置的目标检测结果。
这样,通过 zip(frame_paths, det_results)
可以同时遍历 frame_paths
和 det_results
,并将它们的元素进行配对,方便在循环中同时处理图像帧和对应的目标检测结果。
d = [dict(bbox=x) for x in list(d)]
这行代码的作用是将目标检测结果列表 d
的每个元素转换为字典,并以字典的形式重新存储在列表 d
中。
具体的执行过程如下:
list(d)
将目标检测结果列表d
转换为普通的 Python 列表。这一步可能是为了确保d
是可迭代对象,以便后续的列表推导式进行处理。[dict(bbox=x) for x in list(d)]
是一个列表推导式(list comprehension),用于遍历list(d)
中的每个元素x
,并将其包装为一个字典,字典的键为 "bbox",值为元素x
。- 最终结果是一个新的列表
d
,其中包含了原目标检测结果列表d
的每个元素转换为字典的结果。
总结来说,d = [dict(bbox=x) for x in list(d)]
这行代码的作用是将目标检测结果列表 d
中的每个元素转换为字典,并以字典的形式重新存储在列表 d
中。这可能是为了将目标检测结果的格式转换为与姿势估计模型输入相匹配的格式。
参考: