尺寸变化详细解释

尺寸变化

1. 初始输入

# 图像数据
imgs = torch.randn(4, 3, 8, 224, 224)  
# 热度图数据
heatmap_imgs = torch.randn(4, 17, 32, 56, 56)  

# 调用 forward 函数
a = RGBPoseConv3D()
output = a.forward(imgs, heatmap_imgs)

1.1 解释

N:一个batch_size的样本数是4
Cin:输入的通道数是3
Din:表示连续的 8 个图像帧
Hin:每个图像帧的尺寸高度是224
Win:每个图像帧的尺寸宽度是224

2. begin_rgb_path_conv1

print("begin_rgb_path_conv1")
x_rgb = self.rgb_path.conv1(imgs)
print(x_rgb.shape)

2.1 输出

begin_rgb_path_conv1
torch.Size([4, 64, 8, 112, 112])

2.2 网络结构

ConvModule(
  (conv): Conv3d(3, 64, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
  (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activate): ReLU(inplace=True)
)

2.3 对应创建模型代码

def _make_stem_layer(self):
        """Construct the stem layers consists of a conv+norm+act module and a
        pooling layer."""
        self.conv1 = ConvModule(
            self.in_channels,
            self.base_channels,
            kernel_size=self.conv1_kernel,
            stride=(self.conv1_stride[0], self.conv1_stride[1], self.conv1_stride[1]),
            padding=tuple([(k - 1) // 2 for k in _triple(self.conv1_kernel)]),
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.maxpool = nn.MaxPool3d(
            kernel_size=(1, 3, 3),
            stride=(self.pool1_stride[0], self.pool1_stride[1], self.pool1_stride[1]),
            padding=(0, 1, 1))

2.4 base_channels解释

base_channels (int): Channel num of stem output features. Default: 64.

2.5 计算过程

3. begin_rgb_path_maxpool

print("begin_rgb_path_maxpool")
x_rgb = self.rgb_path.maxpool(x_rgb)
print(x_rgb.shape)

3.1 输出

begin_rgb_path_maxpool
torch.Size([4, 64, 8, 56, 56])

3.2 网络结构

MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), dilation=1, ceil_mode=False)

3.3 对应创建模型代码

def _make_stem_layer(self):
        """Construct the stem layers consists of a conv+norm+act module and a
        pooling layer."""
        self.conv1 = ConvModule(
            self.in_channels,
            self.base_channels,
            kernel_size=self.conv1_kernel,
            stride=(self.conv1_stride[0], self.conv1_stride[1], self.conv1_stride[1]),
            padding=tuple([(k - 1) // 2 for k in _triple(self.conv1_kernel)]),
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.maxpool = nn.MaxPool3d(
            kernel_size=(1, 3, 3),
            stride=(self.pool1_stride[0], self.pool1_stride[1], self.pool1_stride[1]),
            padding=(0, 1, 1))

4. begin_rgb_path_layer1

4.0 输入

torch.Size([4, 64, 8, 56, 56])

4.1 输出

print("begin_rgb_path_layer1")
x_rgb = self.rgb_path.layer1(x_rgb)
print(x_rgb.shape)
# 输出如下
begin_rgb_path_layer1
torch.Size([4, 256, 8, 56, 56])

4.2 网络结构

Sequential(
  (0): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(64, 64, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(64, 64, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(64, 256, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (downsample): ConvModule(
      (conv): Conv3d(64, 256, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (1): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(256, 64, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(64, 64, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(64, 256, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (2): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(256, 64, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(64, 64, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(64, 256, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
)

4.3 计算过程

输入张量尺寸: torch.Size([4, 64, 8, 56, 56])

第一个 Bottleneck3d 模块:
conv1 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 64, 8, 56, 56) (由于 stride 为 1,输出尺寸不变)
conv2 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 3, 3)
输出尺寸: (4, 64, 8, 56, 56) (由于 stride 为 1,输出尺寸不变)
conv3 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
downsample 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
最终输出尺寸: (4, 256, 8, 56, 56)
第二个 Bottleneck3d 模块:
conv1 层:
输入尺寸: (4, 256, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 64, 8, 56, 56) (通道数从 256 变为 64)
conv2 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 3, 3)
输出尺寸: (4, 64, 8, 56, 56) (由于 stride 为 1,输出尺寸不变)
conv3 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
最终输出尺寸: (4, 256, 8, 56, 56)
第三个 Bottleneck3d 模块:
conv1 层:
输入尺寸: (4, 256, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 64, 8, 56, 56) (通道数从 256 变为 64)
conv2 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 3, 3)
输出尺寸: (4, 64, 8, 56, 56) (由于 stride 为 1,输出尺寸不变)
conv3 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
最终输出尺寸: (4, 256, 8, 56, 56)
因此,经过 3 个 Bottleneck3d 模块后,最终输出张量的尺寸为 (4, 256, 8, 56, 56)

4.4 疑问提出

conv3 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
downsample 层:
输入尺寸: (4, 64, 8, 56, 56)
卷积核尺寸: (1, 1, 1)
输出尺寸: (4, 256, 8, 56, 56) (通道数从 64 变为 256)
最终输出尺寸: (4, 256, 8, 56, 56)这个地方不太懂,通道数从 64 变为 256,然后进入downsample 层:不应该是输入通道数是256吗?

通道数从 64 变为 256 的过程确实需要进一步解释。

在你提供的信息中:

  1. conv3 层:
    • 输入通道数 C_in = 64
    • 输出通道数 C_out = 256
    • 这一层的作用是将通道数从 64 增加到 256。
  2. downsample 层:
    • 输入通道数 C_in = 64
    • 输出通道数 C_out = 256
    • 这一层的作用是将通道数从 64 增加到 256。

你观察到的问题是,为什么 downsample 层的输入通道数还是 64,而不是 256,因为前面的 conv3 层已经将通道数增加到 256 了。

这是因为 Bottleneck3d 模块中还有其他的连接方式:

out = self.conv1(x)
out = self.conv2(out)
residual = self.downsample(x) if downsample else x
out += residual
out = self.conv3(out)

可以看到,downsample 层是从原始的输入 x 进行下采样,而不是从 conv3 的输出进行下采样。这是为了实现 “skip connection” 或 “residual connection”。

也就是说,downsample 层的作用是将 x 的通道数从 64 增加到 256,以匹配 conv3 层的输出通道数。这种设计可以更好地保留网络中的低层次特征,提高整体的性能。

总之,通道数从 64 变为 256 的过程是在 conv3 层完成的,而 downsample 层则是用来匹配 conv3 层输出的通道数,以便进行残差连接。这种设计是 ResNet 系列模型的一个关键特点。

4.5 反思

# 输入
torch.Size([4, 64, 8, 56, 56])

# 经过downsample 层:
torch.Size([4, 256, 8, 56, 56])

5. begin_rgb_path_layer2

5.0 输入

torch.Size([4, 256, 8, 56, 56])

5.1 输出

print("begin_rgb_path_layer2")
x_rgb = self.rgb_path.layer2(x_rgb)
print(x_rgb.shape)
# 输出如下
begin_rgb_path_layer2
torch.Size([4, 512, 8, 28, 28])

5.2 网络结构

Sequential(
  (0): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(256, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(128, 128, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(128, 512, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (downsample): ConvModule(
      (conv): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
      (bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (1): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(512, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(128, 128, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(128, 512, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (2): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(512, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(128, 128, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(128, 512, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (3): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(512, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(128, 128, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(128, 512, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
)

5.3 计算过程

6. 初始输入

# 图像数据
imgs = torch.randn(4, 3, 8, 224, 224)  
# 热度图数据
heatmap_imgs = torch.randn(4, 17, 32, 56, 56)  

# 调用 forward 函数
a = RGBPoseConv3D()
output = a.forward(imgs, heatmap_imgs)

6.1 解释

N:一个batch_size的样本数是4
Cin:输入的通道数是17
Din:表示连续的 32 个图像帧
Hin:每个图像帧的尺寸高度是56
Win:每个图像帧的尺寸宽度是56
其中 heatmap_imgs 的尺寸为 (4, 17, 32, 56, 56)。这里的 17 表示热度图的通道数。

在人体姿态估计任务中,热度图通常用于表示关键点的位置概率分布。每个关键点(如头部、左手腕等)对应一个热度图通道。因此,热度图的通道数通常等于关键点的数量。

在这个例子中,热度图的通道数为 17。这意味着这个模型需要预测 17 个关键点的位置。这些关键点可能是人体的主要关节点,如头部、肩膀、手肘、膝盖等。

总之,热度图的通道数表示这个任务需要预测的关键点数量。这在人体姿态估计等计算机视觉任务中非常常见。

7. begin_pose_path_conv1

7.0 输入

torch.Size([4, 17, 32, 56, 56])

7.1 输出

print("begin_pose_path_conv1")
x_pose = self.pose_path.conv1(heatmap_imgs)
print(x_pose.shape)
begin_pose_path_conv1
torch.Size([4, 32, 32, 56, 56])

7.2 网络结构

ConvModule(
  (conv): Conv3d(17, 32, kernel_size=(1, 7, 7), stride=(1, 1, 1), padding=(0, 3, 3), bias=False)
  (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activate): ReLU(inplace=True)
)

7.3 计算过程

8. begin_pose_path_maxpool

8.0 输入

torch.Size([4, 32, 32, 56, 56])

8.1 输出

print("begin_pose_path_maxpool")
x_pose = self.pose_path.maxpool(x_pose)
print(x_pose.shape)
begin_pose_path_maxpool
torch.Size([4, 32, 32, 56, 56])

8.2 网络结构

MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), dilation=1, ceil_mode=False)

9. begin_pose_path_layer1

9.0 输入

torch.Size([4, 32, 32, 56, 56])

9.1 输出

print("begin_pose_path_layer1")
x_pose = self.pose_path.layer1(x_pose)
print(x_pose.shape)
begin_pose_path_layer1
torch.Size([4, 128, 32, 28, 28])

9.2 网络结构

Sequential(
  (0): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(32, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(32, 32, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(32, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (downsample): ConvModule(
      (conv): Conv3d(32, 128, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (1): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(128, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(32, 32, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(32, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (2): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(128, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(32, 32, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(32, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
  (3): Bottleneck3d(
    (conv1): ConvModule(
      (conv): Conv3d(128, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv2): ConvModule(
      (conv): Conv3d(32, 32, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False)
      (bn): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (activate): ReLU(inplace=True)
    )
    (conv3): ConvModule(
      (conv): Conv3d(32, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)
      (bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (relu): ReLU(inplace=True)
  )
)
  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值