MT9V034摄像头学习笔记(四)

DMA采集图像之后就能实现图像的采集了,接下来就要对图像做处理。我这里写了配套的上位机上传上来,又添加前面所说的大津法动态二值化。先看一下上位机的截图
https://download.csdn.net/download/qq_34445388/10273708
上位机链接
这里写图片描述
再来几张采集的赛道图像,上位机可以实现图像的采集,保存和实现算法的功能,在以后的调试中能提升不少调试的速度。
弯道图像
弯道图像
下面是一些下位机的代码,里面包含了通信协议。
/***************************************************************
* 河南科技大学一队
*
* 函数名称:SendPicture
* 功能说明:发送图像到上位机
* 参数说明:
* 函数返回:void
* 修改时间:2018年3月7日
* 备 注:
***************************************************************/
void SendPicture(uint8_t Image[Height][Width])
{
int i = 0, j = 0;
UART_Put_Char(SendImage_UART,0xFE); //发送帧头标志
UART_Put_Char(SendImage_UART,0xEF); //发送帧头标志
for(i=0;i < Image_Height; i++)
{
for(j=0;j < Image_Width;j++)
{
if(Image[i][j]==0xff)
{
Image[i][j]=0xfe; //防止发送标志位
}
UART_Put_Char(SendImage_UART,Image[i][j]);
}
}

UART_Put_Char(SendImage_UART,0xEF); //发送帧尾标志
UART_Put_Char(SendImage_UART,0xFE); //发送帧尾标志
}
/***************************************************************
* 河南科技大学一队
*
* 函数名称:void GetHistGram(uint8_t Image[Height][Width])
* 功能说明:获取图像的灰度信息
* 参数说明:
* 函数返回:void
* 修改时间:2018年3月7日
* 备 注:
***************************************************************/
void GetHistGram(uint8_t Image[Height][Width])
{
int X,Y;
for (Y = 0; Y < 256; Y++)
{
HistGram[Y] = 0; //初始化灰度直方图
}
for (Y = 0; Y < Image_Height; Y++)
{
for (X = 0; X < Image_Width; X++)
{
HistGram[Image[Y][X]]++; //统计每个灰度值的个数信息
}
}
}
uint8_t OSTUThreshold()
{
int16_t Y;
uint32_t Amount = 0;
uint32_t PixelBack = 0;
uint32_t PixelIntegralBack = 0;
uint32_t PixelIntegral = 0;
int32_t PixelIntegralFore = 0;
int32_t PixelFore = 0;
double OmegaBack, OmegaFore, MicroBack, MicroFore, SigmaB, Sigma; // 类间方差;
int16_t MinValue, MaxValue;
uint8_t Threshold = 0;

for (MinValue = 0; MinValue < 256 && HistGram[MinValue] == 0; MinValue++) ;        //获取最小灰度的值
for (MaxValue = 255; MaxValue > MinValue && HistGram[MinValue] == 0; MaxValue--) ; //获取最大灰度的值

if (MaxValue == MinValue) 
{
    return MaxValue;          // 图像中只有一个颜色    
}
if (MinValue + 1 == MaxValue) 
{
    return MinValue;      // 图像中只有二个颜色
}

for (Y = MinValue; Y <= MaxValue; Y++)
{
    Amount += HistGram[Y];        //  像素总数
}

PixelIntegral = 0;
for (Y = MinValue; Y <= MaxValue; Y++)
{
    PixelIntegral += HistGram[Y] * Y;//灰度值总数
}
SigmaB = -1;
for (Y = MinValue; Y < MaxValue; Y++)
{
    PixelBack = PixelBack + HistGram[Y];    //前景像素点数
    PixelFore = Amount - PixelBack;         //背景像素点数
    OmegaBack = (double)PixelBack / Amount;//前景像素百分比
    OmegaFore = (double)PixelFore / Amount;//背景像素百分比
    PixelIntegralBack += HistGram[Y] * Y;  //前景灰度值
    PixelIntegralFore = PixelIntegral - PixelIntegralBack;//背景灰度值
    MicroBack = (double)PixelIntegralBack / PixelBack;//前景灰度百分比
    MicroFore = (double)PixelIntegralFore / PixelFore;//背景灰度百分比
    Sigma = OmegaBack * OmegaFore * (MicroBack - MicroFore) * (MicroBack - MicroFore);//g
    if (Sigma > SigmaB)//遍历最大的类间方差g
    {
        SigmaB = Sigma;
        Threshold = Y;
    }
}
return Threshold;

}
void BinaryImage(uint8_t Image[Height][Width])
{
int i = 0, j = 0;
for(i = 0;i < Image_Height;i++)
{
for(j = 0; j< Image_Width;j++)
{
if(Image[i][j] >= Threshold)
{
Image[i][j] = 0xFE;
}
else
{
Image[i][j] = 0X00;
}
}
}
}
void ImageHandle(uint8_t Image[Height][Width])
{
GetHistGram(Image);
Threshold = OSTUThreshold();
OLEDPrintfNumber(0,0,Threshold);
//BinaryImage(Image);
SendPicture(Image);
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值