Windows下ollama详细安装指南

1、Windows下ollama详细安装指南


1.1、ollama介绍

ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。ollama的目标是使大型语言模型的部署和交互变得简单,无论是对于开发者还是对于终端用户

1.2、系统要求

  • Windows 10/11 64位
  • 8GB RAM(推荐16GB+)
  • 10GB 可用存储空间
  • 已启用虚拟化(BIOS/UEFI设置)
  • 支持CUDA的NVIDIA GPU(可选,用于GPU加速)

1.3、下载安装程序

  1. 访问官方下载页面:

    1. 官方地址:https://ollama.com/download
    2. 百度网盘:https://pan.baidu.com/s/18X96ZrqZGF_kJlKLpuTZVA 提取码: byi8
  2. 选择 Windows 版本下载 在这里插入图片描述

  3. 保存安装文件到本地(默认名称为 OllamaSetup.exe

1.4、安装步骤

  1. 运行安装程序

    • 双击下载的 OllamaSetup.exe
    • 如果出现用户账户控制提示,点击"是"
      在这里插入图片描述
  2. 完成安装

    • 当出现"Installation Complete"提示时点击"Finish"

1.5、验证安装

  1. 打开 PowerShell 或 CMD

  2. 执行版本检查命令:

    ollama --version
    

    ✅ 正常输出示例:

    ollama version 0.1.20
    

1.6、环境变量配置

Ollama 的默认模型存储路径如下:C:\Users%username%.ollama\models,无论 C 盘空间大小,需要安装多少模型,都建议换一个存放路径到其它盘。

  1. 添加安装路径到PATH

    • 设置步骤:

      1. Win+S 搜索 “环境变量” → 编辑系统环境变量

      2. 点击"环境变量" → 系统变量 →新增

        • 变量名为:OLLAMA_MODELS
        • 变量值为:E:\Tools\ollama\models
          在这里插入图片描述
      3. 确定保存

  2. Ollama 退出重新启动

    Windows 右下角图标点击退出后,重新启动

1.7、模型选择与安装【deepseek 示例】

  • 硬件配置推荐表
R1模型版本CPUGPU内存存储
1.5BIntel Core i5/AMD Ryzen 5 及以上无强制要求,有 1GB 及以上显存可提升性能最低 8GB,推荐 16GB+至少 10GB,建议留更多缓存空间
7BIntel Core i7/AMD Ryzen 7 及以上无强制要求,有 4GB 以上显存更好,推荐 8 - 12GB最低 16GB,推荐 32GB+至少 12GB,建议 30GB+
8BIntel Core i7/AMD Ryzen 7 及以上无强制要求,有 4.5GB 以上显存更好,推荐 8GB+最低 16GB,推荐 32GB+至少 12GB,建议 30GB+
14BIntel Core i9/AMD Ryzen 9 及以上8GB 以上,推荐 12GB+,如 RTX 3080 及以上最低 32GB,推荐 64GB至少 15GB,建议 50GB+
32B高端多核,强多线程处理能力18GB 左右,建议 24GB+,如 NVIDIA A10032GB+,推荐 64GB+至少 20GB,建议 80GB+
70B服务器级 CPU,如 Intel Xeon 系列40GB 以上,如 NVIDIA H10064GB+,推荐 128GB+至少 30GB,建议 200GB+
  • 模型选择决策树
通用对话
代码生成
多模态任务
轻量化部署
中文优先
多语言支持
英文优先
Python
Java/C++
Web开发
文本+图像
纯文本
低性能设备
高性能设备
中等性能设备
开始选择模型
主要任务类型
语言支持
编程语言
输入类型
设备性能
DeepSeek-R1
Llama 3.3
Phi-4
DeepSeek-R1
Llama 3.3
Mistral
Gemma 2
Llama 3.3
Phi-4
Gemma 2
Mistral
1.7.1、拉取并运行模型
  1. ollama可拉取模型地址:

    1. ollama library : https://ollama.com/library
    2. 官网首页:https://ollama.com/

    在这里插入图片描述
    以deepseek-r1 为例,点击首页中 DeepSeek-R1

在这里插入图片描述

  1. 拉取并运行模型:

    • 拉取指令
    ollama run deepseek-r1:671b
    # ollama run 目标模型:大小
    

    ✅ 正常输出结果如下:
    在这里插入图片描述

    • 模型交互:

      在交互框中可直接输入问题

    ✅ 正常输出结果如下:
    在这里插入图片描述

  2. 查询已下载模型

    ollama list
    

    ✅ 正常输出结果如下:

    在这里插入图片描述

  3. 其他指令

    # 查询模型信息
    ollama show qwen2:0.5b
    
    # 删除模型
    ollama rm qwen2:0.5b
    
1.7.2、进阶使用技巧
  • API 调用

注意:python中有集成的ollama工具包,需Python 3.8及以上版本

  • Install
pip install ollama
  • Custom client 示例:
from ollama import Client
client = Client(
  host='http://localhost:11434'
)
response = client.chat(model='deepseek-r1:7b', messages=[
  {
    'role': 'user',
    'content': 'strawberry 中有几个r',
  },
])

print(response['message']['content'])

更多API详见:https://pypi.org/project/ollama

REST API详见:https://github.com/ollama/ollama/blob/main/docs/api.md

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一年又半

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值