题目描述:
给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
注意:
数组长度 n 满足以下条件:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
示例:
输入:
nums = [7,2,5,10,8]
m = 2
输出:
18
解释:
一共有四种方法将nums分割为2个子数组。
其中最好的方式是将其分为[7,2,5] 和 [10,8],
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
这道题有点难度,在网上找了找思路,可以使用二分法,也可以使用动态规划,这里使用二分法,分割数组的最大值二分法
代码:
class Solution {
public int splitArray(int[] nums, int m) {
long left = nums[0];
long sum = 0;
for (int i : nums) {
sum += i;
left = i > left ? i:left;
}
if(m == 1){
return (int) sum;
}
if (m == nums.length) {
return (int) left;
}
long right = sum;
while (left != right) {
long mid = (left + right) >> 1;
int need = 1;
int cur = 0;
for (int i : nums) {
if(cur + i > mid){
cur = 0;
need ++;
}
cur += i;
}
if(need > m){
left = mid + 1;
}else {
right = mid;
}
}
return (int) left;
}
}