牛顿迭代法求多元方程近似根

本文介绍了如何运用牛顿迭代法寻找多元方程ax^3+bx^2+cx+d=0的近似根。通过设定初始值,利用核心公式x = x0-f(x0)/f'(x0)进行迭代计算,当误差小于1e-5时停止迭代。提供了一段经VS2008测试无误的C语言代码示例。
摘要由CSDN通过智能技术生成

问题. 牛顿迭代法求ax^3+bx^2+cx+d=0在1附近的根。(系数由用户自己输入)

因为此方法本身是数学问题这里不做讨论也无须讨论。进入我们编程的主题。

记住此法核心的公式:x = x0-f(x0)/f'(x0).   我们令x1=f(x0),x2=f'(x0),这样写起来简洁明了。

步骤:  (1 )   在1附近任意找一个实数作为x0的初始值,如此题,我们取x=1,让x0=x,即x0=1.

            (2)  用初始值x0带入方程计算出f(x0)和f'(x0).即求出x1和x2; 

            (3)  带入上述核心公式计算出x = x0-f(x0)/f'(x0)的值。

            (4)  用新产生的x替换原来的x0,为下一次迭代做准备。

            (5)  若|x-x0|>=1e-5;则继续上述迭代,否则转(6).

            (6)  所得x即为多远方程ax^3+bx^2+cx+d=0的根,输出。

代码如下:(经过VS2008测试无误 测试输入1,2,3,4 输出:-1.65)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值