R-CNN论文翻译

精准的目标检测和语义分割下的丰富的特征层次结构

摘要:在最近几年,目标检测性能正如在经典的PASCAL VOC数据集上经过测试提到的那样,已经趋于稳定。最好的性能方法是复杂的集成系统,通常典型的做法是将多重低层的图像特征与高层的上下文(context)相结合。在这篇论文里,我们提出一个简单而且可扩展的检测算法,这种算法提高了平均精度(mAP:mean average precision ),并且相对于之前2012VOC挑战赛上获得的最好的结果(达到53.3的平均精度mAP 
)还要高出30%。我们的方法结合了两个关键性的见解:一是我们把高容量的卷积神经网络特征应用在为了定位和分割物体的自下而上的region proposals。二是当标签训练数据稀缺的时候,作为辅助任务的监督预训练,以及紧跟的特定区域的微调(domain-specific fine-tuning),能够产生巨大的性能提升。因为我们把region proposals与CNNs结合,所以我们称之为R-CNN方法,也即Regions with CNN features,区域的CNN特征。我们也将R-CNN与OverFeat作比较,一种近来提出的基于类似CNN结构的滑动窗检测。我们发现R-CNN在200个类别的 ILSVRC2013检测数据集上大幅度的优于OverFeat。完整系统的源代码可供下载:http://www.cs.berkeley.edu/˜rbg/rcnn.

引言:特征主导。上一个十年在不断变化的视觉识别任务上的进步都是基于SIFT和HOG特征的广泛使用。但是当我们关注PASCAL VOC目标检测这个经典的目标识别任务时,大家都公认在2010~2012年期间这种进步放慢了,通过构建集成系统或者依赖一些小变异等的成功的方法获得的提升很小。

SIFT和HOG都是块方向梯度直方图,一种我们可以与V1区上复杂细胞粗略关联的表示,这个区也即人类视觉通路的第一皮质区。但是我们也知道识别发生在若干阶段的下游,这就暗示我们是否存在层次结构的多阶段进程的计算特征来丰富我们的视觉识别任务。

Fukushima的神经认知机一个模式识别中受生物启发的分层结构和迁移不变模型,是早期在那样一个阶段的尝试。但是,这个神经认知机缺乏监督训练算法。建立在Rumelhart等人和 LeCun等人基础上的通过反向传播的随机梯度下降法是一种有效的训练卷积神经网络(一类神经认知机扩展的模型)的方法。

 

CNNs在90年代的时候得到大量的使用,但是随着支持向量机的出现而日渐衰落。在2012年Krizhevsky等人通过在 ImageNet上大规模的视觉识别挑战赛(the Large Scale Visual Recognition Challenge——ILSVRC)上达到的更高的分类准确率重新点燃了对CNNs的热情。他们的成功在于在120万张标签图片上训练巨大的CNN网络,并且在LeCun’s CNN 网络上采取了一些改进(例如:max(x; 0) 矫正非线性和“dropout”正则化)。

 

ImageNet上的显著结果在2012的视觉识别挑战赛的专题研讨会上得到了热烈的讨论。大家提炼出一个中心的议题:在ImageNet上CNN的分类结果推广到 PASCAL VOC数据集上做目标检测的挑战会达到怎样的程度?

 

我们通过构建图像分类和目标检测之间沟壑的桥梁来回答这一问题。这篇文章最大的亮点就是显示出在PASCAL VOC 数据集上一个CNN网络能够产生一个相当好的目标检测的性能相比较于基于简单的HOG之类特征的系统。为了达到这一结果。我们关注两个问题:用深度网络定位物体,并且用少部分标记的检测数据来训练高性能的模型。

 

不像图像分类,检测要求在一张图像中定位物体(可能很多)。一种途径是帧定位作为一种回归问题。但是从Szegedy等人的工作,同时我们自己的,表明这种策略在实际中可能表现会不好(他们报告中在VOC2007数据集上平均精度mAP是30.5%,而与之相比我们的方法达到的效果是58.5的平均精度mAP)。还有一个可选择的是构建一个滑动窗检测器。CNNs被用于这种方式至少20年,典型的是被约束的物体类别的分类对象,例如人脸和行人。为了维持高空间分辨率,这些CNNs网络通常仅有两个卷积层和一个池化层。我们也考虑到采用滑动窗口的方法。但是,窗口单元使我们的网络结构变得复杂,有五层卷积层,并且在输入图像上有一个巨大的可接受的区域(195*195像素范围)和跨度(32*32像素范围),这使得在滑动窗口模式下进行的精确定位成为一个开放的技术挑战。

 

与以上不同,我们解决CNN的定位问题通过“用区域识别”的模式去操控,这种方法已成功运用到物体检测和语义分割。在检测时,我们的方法在每张输入图片上产生大约2000个独立类别的region proposals,然后再用CNN网络从每一个proposal上提取一个固定长度的特征向量,接着我们用特定类别的线性SVMs去分类每一个区域。不管区域的形状大小,我们用一个简单的技术(图像仿射变换)从每个region proposal去计算固定大小的CNN网络的输入。图1展示了我们的方法概述并且突出了一些我们的结果。因为我们的系统把region proposals和CNNs结合在一起,我们给我们的方法起了个绰号叫R-CNN:Regions with CNN features.

 

 

图1:物体检测系统概述。我们的系统:(1)获取一张输入图片;(2)提取将近2000个自底向上的 region proposals;(3)用一个巨大的卷积神经网络(CNN)计算每一个proposal的特征;(4)用特定类别的线性SVMs去分类每一个区域。R-CNN在PASCAL VOC 2010数据集上达到53.7% 的平均精度(mAP)。作为对比,《Selective search for object recognition》论文用相同的 region proposals的方法达到了35.1%的平均精度(mAP),但是它结合了空间金字塔和视觉词袋的方法。而流行的可变形部件模型(DPM)的方法性能也只达到33.4%的平均精度(mAP)。在200个类别的ILSVRC2013 检测数据集上,R-CNN的平均精度(mAP)达到了31.4%。与OverFeat 算法最近的最好的24.3%的平均精度(mAP)的结果相比明显提高了不少。

 

在这篇论文的更新版本里,我们把分别在200类 ILSVRC2013检测数据集上用R-CNN的方法与最近提出的OverFeat 检测系统的方法做了正面的比较。OverFeat用CNN的滑动窗做检测并且直到现在也是在ILSVRC2013数据集上性能最好的检测方法。我们的R-CNN以31.4%压倒24.3%的平均精度(mAP)远远超出了OverFeat的方法。

 

在检测上面临的第二个挑战是对训练一个大型的CNN网络而言,标签数据的稀缺和当前可用数据量的不充足。传统的方法是用无监督预训练,紧接着监督微调。这篇论文第二个主要的贡献是在一个巨大的辅助训练集(ILSVRC)做监督预训练,紧接着在小数据集(PASCAL)做特定领域的微调,这是一个学习高性能CNNs网络的非常高效的模式,当我们的数据稀缺的时候。在我们的实验中,微调在检测过程中,提高了平均精度mAP八个百分点。在 VOC 2010的数据集上,相比于高度调整的以HOG特征为基础的可变形部件模型(DPM)的方法获得的33%的平均精度(mAP),在微调后,我们的系统可以达到54% 的平均精度(mAP)。我们也给读者指出了同时期的Donahue等人的工作,他们指出Krizhevsky’s的CNN(不带微调)像一个特征提取的黑箱一样也可以被使用,它在几个识别任务上也产生了不错的性能包括:情景分类,细粒度的子分类和域的适应性。

 

我们的系统也是非常高效的。仅有的特定类别的计算是一个相当小的矩阵向量的相乘和贪婪的非极大值抑制。这种计算属性是根据跨所有类别的共享特征和比之前使用的区域特征更低维的两个数量级的特征所得出的。

 

理解我们方法的失败的模型对改进它也是很关键的,所以我们报告了从 Hoiem等人的检测分析工具的结果。作为一个这种分析的直接结果,我们证明了一个简单的包围盒回归方法大大减少了误定位,这是主要的误差模式。

 

在阐述技术细节之前,我们指出正因为R-CNN在区域上操纵,它很自然地扩展到语义分割的任务。经过一些小的变化,我们在PASCAL VOC数据集上也达到了有竞争力的结果:在VOC 2011检测数据集上达到了47.9%的平均分割率。

 

2 用R-CNN的物体检测

 

我们的检测系统包括三个模块。第一模块产生类别独立的 region proposals。这些proposals定义我们检测器需要的候选可用的检测集。第二个模块是一个巨大的卷积神经网络来从每个区域提取固定长度的特征向量。第三个模块是一系列特殊类别的线性SVMs分类器。在这一部分,我们展示我们每个模块的设计决策,描述它们测试时间的使用,它们的参数如何学习的细节,以及在PASCAL VOC 2010-12和 ILSVRC2013上展示检测结果。

 

2.1 模块设计

 

Region proposals.最近很多论文提供了产生独立类别的 region proposals的方法。例子如下:一般物体检测(objectness),选择性搜索(selective search),独立类别的物体 proposals,受约束的参数分钟裁剪(constrained parametric min-cuts (CPMC)),多尺度组合分(multi-scale combinatorial grouping),和通过利用CNN网络到定期间隔平方生成去检测有丝分裂细胞的Cires¸等方法。因为R-CNN对特定region proposal 方法不可知,我们使用选择性搜索的方法与之前的检测工作产生可控的对比。

 

特征提取。我们提取用 Krizhevsky等人描述的CNN的Caffe实现从每个 region proposal上提取4096维特征向量。特征由前向传播将一个均差的227*227RGB图像通过5个卷积层和两个全连接层。读者可以在《An open source convolutional architecture for fast feature embedding》http://caffe.berkeleyvision.org/, 2013. 3《 ImageNet classificationwith deep convolutional neural networks.》这两篇论文中可以神经网络结构的信息。

 

为了能计算region proposal的特征,我们首先将图片数据转换成CNN网络兼容的格式(CNN网络的结构要求227*227像素固定大小的输入图片数据)。在我们任意大小区域可能转换的方式中,我们选择最简单的。不管候选区域的大小和长宽比,我们将物体附近的包裹紧密的包围盒中的像素warp到要求的大小尺寸。在warping之前,我们先膨胀扩张包围紧密的包围盒以至于在warped大小尺寸基础上在原有的包围盒周围恰好有p个像素的warped图像内容(我们用p=16).图2展示了随机采样的warped训练区域,可选择的warping方法在附录A讨论。

 

 

2.2测试时期的检测

在检测时期,我们用选择性搜索方法对每张测试图片提取2000个 region proposals(在所有的试验中我们的选择性搜索方法是最快的模式)。我warp每一个proposal并且通过CNN网络前向传播来计算特征。然后对于每一个类别,我们用为该类别训练的SVM分类器去给每个提取的特征向量打分。考虑到图像上所有的低分区域,我们应用贪婪极大值抑制(对每一个独立类别)去拒绝一个区域,这个区域是有着intersection-overunion(IoU)的重叠并有着高于学习获得的阈值的高得分挑选的区域

 

RCNN是目标检测将CNN网络+regions proposal +BBox regression达到了目前目标检测的最好效果,参考文献很多为这篇论文的思想提供了很多思路。 
这篇文章的思路实际现在反观是很简单的一个思路,因为训练样本很少,所以提取region proposal 来训练网络,窗口滑动的方式效率太低,所以使用BBox regression的方法拟合位置框。预训练模型的方法也是在文献中已经提出的方法,科学就是这样,不是你的方法有多高深,数学理论有多么完美,这是结果为王,这篇文章的效果相对以前提升了近25%,这是巨大的进步,并且为之后的位置检测进一步奠定了这个框架的地位—粗见,抛砖引玉

2.Object detection with R-CNN

将在这一部分讲述目标检测系统包含的三个模型

2.1模型设计

候选框提取:近些时间的论文提出了多种产生独立种类区域候选框的算法,其中包括objectness SS 特定种类的目标框 CPMC等等。RCNN使用不特定的目标框提取方法,我们选择SS方法作为与先前工作的比较 
特征提取:我们从每一个候选框中使用caffe框架下的Krizhevsky给出的CNN方法抽取4096维特征向量,特征通过输入的规定大小的227*227像素大小的图片在前向传播的五个卷积层和两个全连接层中抽取,建议阅读22和23了解更多网络结构的信息。 
为了计算候选框的特征信息,我们必须首先将图片数据转化成固定的大小,与提取CNN相兼容(227*227大小)。对于不规则的区域,我们采取简单的方法,不管他的纵横比

2.2 测试检测

测试时采用SS方法从每一个测试图片中选取2000个候选框(SS快速模式),将图片尺寸归一化之后输入到CNN的指定层来提取特征,然后,对于每一种类,使用SVM方法对每一个提取的特征进行打分,鉴于所有的region proposal都存在于一张图片中,所以我们使用贪婪的非极大值抑制算法(对每一类独立使用)来抛弃那些与更高分被选择区域重叠率大于某个阈值的区域。 
运行分析:两个特性使得检测高效,第一,CNN的参数被共享在所有的类间,第二,被CNN计算出的特征向量相对于其他普遍的特征计算方法是低维的,比如spatial pyramids with bag-of-visual-word方法。UVA检测系统提取的维度是我们提取维度高出两个数量级(360k vs 4k) 
权值共享的结果是,将所有的计算region proposal 时间和计算特征的时间平摊在每一类的计算上面,唯一的与类相关的计算时间就是特征和SVM权重和非极大值抑制的计算时间。实际上所有的图片最终被转化成矩阵-矩阵的运算。特征矩阵规定为2000*4096,SVM的权重矩阵为4096*N,其中N是待检测数据集物体种类。 
这些分析显示RCNN能够分类上千种物体种类而不用使用其他方法,如哈希表(hashing)。即使有十万种类,计算出最后的多阶矩阵的结果在现代多核CPU上也只需要10秒钟。使用region proposal和共享特征的效果布置局限在这个效果上,UVA系统需要使用134G的容量而RCNN只需1.5G。 
20类与200类的运算速度比较 
还可以比较DPM方法和RCNN方法的mAP。。。略

2.3训练

有监督的预训练:我们有区别的在辅助数据库ILSVRC2012(图片分类层面,标签没有BBox信息)预训练CNN,预训练采用的是开源的caffe CNN库。简单的说我们训练出来的CNN模型基本接近于文献23所训练的。获得了top1错误率2.2%略高于ILSVRC2012公布的数据。这种差异是由于训练阶段阶段的简化。

特定领域参数调优:为了使我们训练的CNN模型适应检测的任务和新的领域(归一化的VOC窗口),我们继续通过随机梯度下降方法(SGD)只使用在VOC数据集中提取的warp过的候选框训练。通过一个随机初始化的21类(10中物体种类加背景)分类层来代替CNN模型中ImageNet数据集中特定的1000类的分类层,CNN的基本结构不变。我们将所有的IoU大于0.5的候选框标记为正样本,其余为负样本。SGD的学习速率设置为0.001(十分之一初始预训练的速度),这样就确保了在不用设置初始化的情况下使调参(FT)顺利进行。在每一次随机梯度下降的迭代中,我们统一使用32个正样本(包括所有类别)和96个背景样本构建一个最小分支128.我们将偏置设置为正样本窗口,因为正样本窗口相对于负样本窗口过少。

目标种类分类器:以训练一个二分类的检测器检测汽车为例。很明显需要把紧紧包括汽车的图片候选框设置为正样本,相类似的,没有与汽车部位相关的窗口则设置为负样本。不太清晰的是怎么设置部分覆盖汽车的窗口类别。解决这个问题需要用的IoU阈值,阈值以下的窗口设置为负样本。覆盖的阈值,0.3被从0-0.5的区间选取,我们发现小心的选取这个阈值是很重要的。如果将这个阈值设置为0.5,如文献34,会降低mAP 5个百分点,类似的,设置阈值为0则会降低4个百分点,每一类物体的正样本被简单的定义为ground-truth box。 
一旦特征被抽取,训练标签被应用,我们对于每一类物体训练一个线性SVM。由于训练数据对于存储空间来说太过巨大,我们使用标准的负难例减少方法。难负例的挖掘可以很快地手链,并且在实践中所有图片中第一次过模型的时候mAP就将停止增长。 
在补充材料中,我们讨论了为什么在支持向量机训练和FT中正负样本的设定会有不同,我们也讨论了为什么训练检测器是必要的,而不是简单的使用从已调参的CNN模型中直接使用第8层全连接层的输出。。

2.4 PASCAL VOC 2010-12中的结果

按照PASCAL VOC的最佳实践步骤,我们在VOC2007的数据集上验证了我们所有的设计思想和参数处理,对于在2010-2012数据库中,我们在VOC2012上训练和优化了我们的支持向量机检测器,我们一种方法(带BBox和不带BBox)只提交了一次评估服务器 
表1展示了(本方法)在VOC2010的结果,我们将自己的方法同四种先进基准方法作对比,其中包括SegDPM,这种方法将DPM检测子与语义分割系统相结合并且使用附加的内核的环境和图片检测器打分。更加恰当的比较是同Uijling的UVA系统比较,因为我们的方法同样基于候选框算法。对于候选区域的分类,他们通过构建一个四层的金字塔,并且将之与SIFT模板结合,SIFT为扩展的OpponentSIFT和RGB-SIFT描述子,每一个向量被量化为4000词的codebook。分类任务由一个交叉核的支持向量机承担,对比这种方法的多特征方法,非线性内核的SVM方法,我们在mAP达到一个更大的提升,从35.1%提升至53.7%,而且速度更快。我们的方法在VOC2011/2012数据达到了相似的检测效果mAP53.3%。

3.可视化,融合和模型的错误

3.1学习特征的可视化

第一层滤波器能够被直接可视化,并且易于理解(参考文献23)。他们捕捉方向边缘和局部颜色。理解接下来的基层更加有挑战性。zeiler和Fergus在文献37中展示了一个形象化并且引人注意的解卷积网络的方法。我们提出一种简单且补充性的非参数化方法,这可以直接展示网络学习什么。 
想法是在网络中挑选出特定的单元(一种特征)并且将之作为一种物体探测器。具体的,我们在一个很大的候选框数据集上计算特定特征的激活值,将激活值从高到低进行排序,应用NMS,然后显示出最高分区域。我们的方法使得这个选中的单元自己说话通过精确地展示他对什么样的区域感兴趣,我们避免平均为了看到不同的视觉模式,增加对于通过单元计算出的不变形的洞察力。 
我们从第五pool层可视化单元,这个层经过最大池化的网络第五层,同时也是最后一层卷积层。第五层的特征结构是9216维,忽略边界影响,每一个第五pool单元在原始的227*227输入图像上有一个196*196像素的区域,中心的pool5单元有一个近似于全局的视角,而那些接近边缘的单元只有更小被剪切的支持。 
在图三中每一行展示了我们从使用VOC2007调参过的CNN网络挑选的经过pool5层单元激活的16个最高得分图片。这里可视化了256个单元中的6个(在补充材料中有更多)。这些单元被选中展示网络学习的代表性的模板。在第二行,我们可以看出这个单元对于狗脸和点阵更加敏感。对应第三行的单元对红色的团簇更敏感,还有的单元对人脸和一些抽象的结构敏感,例如文本和窗户的三角形结构,学习网络呈现出学习小规模类别特征的和分散的形状,纹理,颜色和材质。家下来的第六层全连接层则是具备将一系列丰富特征部分模型化的任务。 
图三:6个pool5单元

3.2消融学习(分解学习)

逐层性能,不调参的情况下: 为了理解哪些层对于检测性能是关键的,我们分析了基于VOC2007的每一个CNN的最后三层结果。pool5层在3.1已经做了描述,最后两层见后文。 
与pool5相连的fc6是全连接层。为了计算特征,他将一个4096*9216的权值矩阵与pool5相乘(pool5被剪切为一个9216维的向量)然后增加一个偏置向量。这个中间向量是一种分量方式的半波映射。 
fc7是网络的最后一个层,这个层也被设置一个4096*4096的权值矩阵与fc6计算出来的特征相乘。相似的这个层也加入了一个偏置向量并应用了半波映射。 
我们通过观察CNN在PASCAL上的结果开始,例如,所有的CNN参数只在ILSVRC2012上面预训练。逐层(表2.第1-3行)的分析性能揭示了经过fc7的特征相对于fc6的特征表现不够好。这就意味着29%或者说大约1680万的CNN网络参数对于提升mAP毫无作用。更加令人吃惊的是移除fc7和fc6层能产生更好的结果,即使pool5层的参数只用使用了CNN网络参数的6%。CNN网络最有代表性的作用产生自他的卷积网络,而不是用更多更密集连接的全连接网络。这个发现意味着就HOG的意义而言在计算密集特征更为有意义。这就意味着能够使基于滑动窗口的探测器成为可能包括DPM,在pool5层特征的基础上。(这两句话大致意思应该是,卷积层在网络中的作用相对于其它层是很大的,而且作为一种特征提取的方法,pool5层输出的特征同样可以选作为滑动窗口方法的素材) 
逐层分析,有调参。我们现在来看我们基于VOC2007数据集调参之后的CNN网络的测试结果。这个提升是惊人的(表24-6行):调参使得mAP增长8个百分点至54.2%。通过调参得到的提升大于fc6,fc7和fc5的结果,这也意味着pool5学习的特征在检测中表现平平,绝大多数的提升来自于在pool5层之上学习了一个特定类别的非线性分类器。

与近年特征学习方法的比较:相当少的特征学习方法应用与VOC数据集。我们找到的两个最近的方法都是基于固定探测模型。为了参照的需要,我们也将基于基本HOG的DFM方法的结果加入比较 
第一个DPM的特征学习方法,DPM ST,将HOG中加入略图表征的概率直方图。直观的,一个略图就是通过图片中心轮廓的狭小分布。略图表征概率通过一个被训练出来的分类35*35像素路径为一个150略图表征的的随机森林方法计算 
第二个方法,DPM HSC,将HOG特征替换成一个稀疏编码的直方图。为了计算HSC。。。(HSC的介绍略) 
所有的RCNN变种算法都要强于这三个DPM方法(表2 8-10行),包括两种特征学习的方法(特征学习不同于普通的HOG方法?)与最新版本的DPM方法比较,我们的mAP要多大约20个百分点,61%的相对提升。略图表征与HOG现结合的方法比单纯HOG的性能高出2.5%,而HSC的方法相对于HOG提升四个百分点(当内在的与他们自己的DPM基准比价,全都是用的非公共DPM执行,这低于开源版本)。这些方法分别达到了29.1%和34.3%。

3.3检测误差分析

为了揭示出我们方法的错误之处, 我们使用Hoiem提出的优秀的检测分析工具,来理解调参是怎样改变他们,并且观察相对于DPM方法,我们的错误形式。这个分析方法全部的介绍超出了本篇文章的范围,我们建议读者查阅文献21来了解更加详细的介绍(例如归一化AP的介绍),由于这些分析是不太有关联性,所以我们放在图4和图5的题注中讨论。 
这里写图片描述

3.4 BBox回归

基于误差分析,我们使用了一种简单的方法减小定位误差。受启发于BBox在DPM方法中的应用,我们训练了一个线性回归模型来预测新检测框的位置,基于SS方法提取的候选框pool5输出的特征。详细的方法在补充材料中给予阐述。表1表2和图4展示了这个简单方法对于错误位置巨大的修正提升达到3到4个百分点。

4.语义分割

语义分割我并没有搞,这部分略

5.结论

最近几年,物体检测陷入停滞,表现最好的检测系统是复杂的将多低层级的图像特征与高层级的物体检测器环境与场景识别相结合。本文提出了一种简单并且可扩展的物体检测方法,达到了VOC2012数据集相对之前最好性能的30%的提升。 
我们取得这个性能主要通过两个理解:第一是应用了自底向上的候选框训练的高容量的卷积神经网络进行定位和分割物体。另外一个是使用在标签数据匮乏的情况下训练大规模神经网络的一个方法。我们展示了在有监督的情况下使用丰富的数据集(图片分类)预训练一个网络作为辅助性的工作是很有效的,然后采用稀少数据(检测)去调优定位任务的网络。我们猜测“有监督的预训练+特定领域的调优”这一范式对于数据稀少的视觉问题是很有效的。 
最后,我们注意到通过使用经典的组合从计算机视觉和深度学习的工具实现这些结果(自底向上的区域候选框和卷积神经网络)是重要的。而不是违背科学探索的主线,这两个部分是自然而且必然的结合。

reference

文献19:C.Gu Recognition using regions,CVPR 2009 这篇文章给本文提供了思路。 
文献23:A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. CNN模型提出的文章,经典论文 
文献34 :J. Uijlings, K. van de Sande, T.Gevers, and A. Smeulders. Selective 
search for object recognition. IJCV, 2013. SS regions proposal 选择算法 
文献11:J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and 
T. Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML, 2014. 为CNN性能说明

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值