2019: [Usaco2009 Nov]找工作

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34564984/article/details/53172348

2019: [Usaco2009 Nov]找工作

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 198  Solved: 147
[Submit][Status][Discuss]

Description

奶牛们没钱了,正在找工作。农夫约翰知道后,希望奶牛们四处转转,碰碰运气。而且他还加了一条要求:一头牛在一个城市最多只能赚D(1 <= D <= 1,000)美元,然后它必须到另一座城市工作。当然,它可以在别处工作一阵后又回来原来的城市再最多赚D美元。而且这样往往返返的次数没有限制。 城市间有P (1 <= P <= 150)条单向路径连接,共有C(2 <= C <= 220)座城市,编号1..C. 贝希当前处在城市S (1 <= S <= C)。路径 i 从城市A_i 到城市B_i (1 <= A_i <= C; 1 <= B_i <= C),在路径上行走不用花任何费用。为了帮助贝希,约翰让它使用他的私人飞机服务。这项服务有F条(1 <= F <= 350)航线,每条航线是从城市J_i飞到另一座城市K_i (1 <=J_i <= C; 1 <= K_i <= C),费用是T_i (1 <= T_i <= 50,000)美元。如果贝希手中如果没有现钱,可以用以后赚的钱来付机票钱。贝希可以选择任何时候,在任何城市退休。如果在工作时间上不作限制,贝希总共可以赚多少钱呢? 如果赚的钱也不会出现限制,就输出-1。

Input

第1行: 5个空格分开的整数 D, P, C, F, S

第2..P+1行: 第 i+1行包含2个空格分开的整数,表示一条从A_i 到 B_i的单向路径

第P+2..P+F+1行: 第P+i 包含3个空格分开的整数,表示一条从J_i到K_i的单向航线,费用为T_i

Output

第1行: 在上述规则下的最多可赚的钱数。

Sample Input

100 3 5 2 1
1 5
2 3
1 4
5 2 150
2 5 120

Sample Output

250

HINT

样例说明:贝希可以从城市 1 到 5 再到 2 ,最后到 3, 总共赚 4*100 - 150 = 250 美元。

Source

Silver



还以为是图上dp,原来将赚的钱附到边权上跑最长路就好了。。。。。。
注意判正环。
附代码:

#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<climits>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define N 220
#define M 2002
#define inf 0x3f3f3f3f
using namespace std;
int d,p,c,f,s;
int n,m;
int head[N],pos;
struct edge{int to,next,c;}e[M];
void add(int a,int b,int c)
{pos++;e[pos].to=b,e[pos].next=head[a],e[pos].c=c;head[a]=pos;}
queue<int>Q;bool vis[N],ok;int dis[N],cnt[N];
void spfa()
{
	for(int i=1;i<=c;i++)dis[i]=-inf;
	vis[s]=1;dis[s]=0;Q.push(s);
	while(!Q.empty())
		{
			int u=Q.front();Q.pop();vis[u]=0;
			if(cnt[u]>c){ok=1;return;}
			for(int i=head[u];i;i=e[i].next)
				{
					int v=e[i].to;
					if(dis[v]<dis[u]+e[i].c)
						{
							dis[v]=dis[u]+e[i].c;
							if(!vis[v])
								{
									vis[v]=1;cnt[v]++;
									Q.push(v);
								}
						}
				}
		}
}
int ans;
int main()
{
	scanf("%d%d%d%d%d",&d,&p,&c,&f,&s);
	for(int i=1,x,y;i<=p;i++)
		{
			scanf("%d%d",&x,&y);
			add(x,y,d);
		}
	for(int i=1,x,y,z;i<=f;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			add(x,y,d-z);
		}spfa();
	if(ok)printf("-1\n");
	else
		{
			for(int i=1;i<=c;i++)ans=max(dis[i],ans);
			printf("%d\n",ans+d);
		}
}


阅读更多

没有更多推荐了,返回首页