model.eval()的使用

模型训练中,使用model.train()确保BatchNormalization层利用每批数据的均值和方差,Dropout进行随机失活。而在测试时,model.eval_r()使BN使用全局训练数据的均值和方差,且不应用Dropout,以获得稳定的预测结果。理解这些机制对于优化深度学习模型的性能至关重要。
摘要由CSDN通过智能技术生成

训练开始之前写上model.trian(),在测试时写上model.eval_r()。其中原因:

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train(),在测试时添加model.eval_r()。其中model.train()是保证BN层用每一批数据的均值和方差,而model.eval_r()是保证BN用全部训练数据的均值和方差;而对于Dropout,model.train()是随机取一部分网络连接来训练更新参数,而model.eval_r()是利用到了所有网络连接。

联系Batch Normalization和Dropout的原理之后就不难理解为何要这么做了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值