Spring AI Alibaba-01-SpringBoot集成SpringAI Alibaba 快速开始
Lison
<dreamlison@163.com>
, v1.0.0
, 2025.04.19
文章目录
Spring 官方自从发布了 Spring AI,基于 Spring AI 和通义千问大模型的 Spring AI Alibaba 也跟随其后。Alibaba 的出现也就意味着国内的 Javaer 们也能很轻松的开发AI应用了。那么本文就基于 Spring AI Alibaba 开发一个简单的 AI 对话应用。
依赖
开发工具:IntelliJ IDEA
JDK17+, 可以使用idea自带
阿里云百炼:https://bailian.console.aliyun.com/
准备
使用IDEA 创建demo
然后选择web项目,lambok等常用的依赖,,java的版本最好是17之后,springboot的版本也要选择3.4以上
Pom依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.4.4</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.lison.ai</groupId>
<artifactId>spring_ai_alibaba_demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>spring_ai_alibaba_demo</name>
<description>第一个 Spring AI Alibaba 项目</description>
<properties>
<java.version>23</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>
<dependencies>
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter</artifactId>
<version>1.0.0-M3.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-beans</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<annotationProcessorPaths>
<path>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>
新建ChatController.java
package com.lison.ai.spring_ai_alibaba_demo.controller;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.client.advisor.SimpleLoggerAdvisor;
import org.springframework.ai.chat.memory.InMemoryChatMemory;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@Slf4j
@RestController
@RequestMapping("/ai/v1")
public class ChatController {
private final ChatClient chatClient;
public ChatController(ChatClient.Builder chatClientBuilder) {
this.chatClient = chatClientBuilder
// 实现 Chat Memory 的 Advisor
// 在使用 Chat Memory 时,需要指定对话 ID,以便 Spring AI 处理上下文。
.defaultAdvisors(
new MessageChatMemoryAdvisor(new InMemoryChatMemory())
)
// 实现 Logger 的 Advisor
.defaultAdvisors(
new SimpleLoggerAdvisor()
)
// 设置 ChatClient 中 ChatModel 的 Options 参数
.defaultOptions(
DashScopeChatOptions.builder()
.withTopP(0.7)
.build()
)
.build();
}
@GetMapping("/simple/chat")
public String simpleChat(String query) {
log.info("query: {}",query );
String text = chatClient.prompt(query).call().content();
log.info("text: {}",text );
return text;
}
@GetMapping("/chat")
public String chat(String message) {
return this.chatClient.prompt()
.user(message)
.call()
.content();
}
@GetMapping("/hello")
public String hello(String message) {
return "Hello " + message;
}
}
spring-ai 支持基于chat memory的对话记忆。在上面的代码中,只需要在构建chatClient
时添加两行代码。
private ChatMemory chatMemory = new InMemoryChatMemory();
public ChatController(ChatClient.Builder builder) {
this.chatClient = builder
.defaultAdvisors(new MessageChatMemoryAdvisor(chatMemory, UUID.randomUUID().toString(), 10))
.build();
}
UUID 会作为此次对话的唯一标识,ChatMemory会将之前的对话内容记录下来,每次对模型的输入就是历史的对话记录,最终实现对话记忆。
这种做法最终会影响使用大模型的成本,就如上面所说,输入和输出都会影响总token数量,而token就相当于金钱。
这里有两个事项需要注意:
- Spring AI Alibaba 基于 Spring Boot 3.x 开发,所以JDK 版本要求为 17 及以上。
- spring-ai 相关依赖包还没有发布到中央仓库,本地 Maven 仓库要添加以下配置。
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
application.yml配置
server:
port: 8080
spring:
application:
name: AI Demo
ai:
dashscope:
api-key: sk-xxxx
对话页面
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<script src="js/marked.min.js"></script>
<title></title>
<style>
body {
background-color: #f8f9fa;
font-family: Arial, sans-serif;
}
.container {
margin: 50px auto;
width: 800px;
background-color: #fff;
padding: 20px;
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
h1 {
text-align: center;
margin-bottom: 30px;
}
label {
display: block;
margin-bottom: 10px;
color: #333;
}
input[type="text"] {
width: 85%;
padding: 10px;
border: 1px solid #ccc;
border-radius: 3px;
}
input[type="submit"] {
background-color: #2ecc71;
color: #fff;
border: none;
padding: 10px 20px;
border-radius: 3px;
cursor: pointer;
width: 10%;
}
.chat-box {
width: 100%;
height: 500px;
padding: 10px;
border: 1px solid #ccc;
border-radius: 3px;
overflow-y: scroll;
}
.message {
margin-bottom: 10px;
padding: 10px;
background-color: #f1f1f1;
border-radius: 3px;
}
.user-message {
background-color: #2ecc71;
color: #fff;
}
.bot-message {
background-color: #e6aa6b;
color: #fff;
}
.loader {
text-align: center;
}
.loader::after {
content: "";
display: inline-block;
width: 20px;
height: 20px;
border-radius: 50%;
border: 2px solid #ccc;
border-top-color: #2ecc71;
animation: spin 1s infinite linear;
}
@keyframes spin {
to {
transform: rotate(360deg);
}
}
</style>
</head>
<body>
<div class="container">
<h1>AI 对话</h1>
<form id="form" style="width: 47%;position: absolute;bottom: 150px;margin-left:15px">
<input type="text" id="message" name="message" placeholder="输入你的问题">
<input type="submit" value="发送">
</form>
<br>
<div id="loader" class="loader" style="display: none;"></div>
<div id="chat-box" class="chat-box"></div>
</div>
<script>
var loader = document.getElementById("loader");
document.getElementById("form").addEventListener("submit", function(event) {
event.preventDefault();
var messageInput = document.getElementById("message");
var message = messageInput.value;
messageInput.value = "";
var chatBox = document.getElementById("chat-box");
var userMessage = document.createElement("div");
userMessage.className = "message";
userMessage.textContent = "我: " + message;
chatBox.appendChild(userMessage);
chatBox.scrollTop = chatBox.scrollHeight;
loader.style.display = "block";
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://localhost:8080/ai/v1/chat?message=" + encodeURIComponent(message), true);
xhr.onreadystatechange = function() {
if (xhr.readyState === 4) {
loader.style.display = "none";
if (xhr.status === 200) {
var response = xhr.responseText;
var botMessage = document.createElement("div");
botMessage.className = "message bot-message";
var botMessageText = document.createElement("span");
botMessageText.className = "message-text";
botMessage.appendChild(botMessageText);
botMessageText.innerHTML = marked.marked(response);
chatBox.appendChild(botMessage);
chatBox.scrollTop = chatBox.scrollHeight;
} else if (xhr.status === 400) {
var error = JSON.parse(xhr.responseText);
var errorMessage = document.createElement("div");
errorMessage.className = "message bot-message";
errorMessage.textContent = "Bot: " + error.message;
chatBox.appendChild(errorMessage);
chatBox.scrollTop = chatBox.scrollHeight;
} else {
var errorMessage = document.createElement("div");
errorMessage.className = "message bot-message";
errorMessage.textContent = "Bot: Failed to connect to the backend service. Please make sure the backend service is running.";
chatBox.appendChild(errorMessage);
chatBox.scrollTop = chatBox.scrollHeight;
}
}
};
xhr.onloadstart = function() {
loader.style.display = "block";
};
xhr.onloadend = function() {
loader.style.display = "none";
};
xhr.send();
});
</script>
</body>
</html>
注意:js 引入的 marked.min.js
可以去 GitHub 或联系我
注册配置APi
创建Key
测试验证
访问:http://localhost:8080/chat.html
输入对话
测试二:
http://localhost:8080/ai/v1/simple/chat?query=你是谁
需要了解的基本知识
上面的示例其实就是一个SpringBoot项目,对于Javaer肯定不陌生。而对于没有人工智能相关背景的人来说,如果想要基于 Spring AI 开发一个AI应用产品,还是需要了解一些基本概念的。
- AI 模型:AI 模型是旨在处理和生成信息的算法,通常模仿人类的认知功能。我们现在基本上听到的大模型都属于生成式AI模型,例如通义千问。
- Prompt:提示词作为生成式大模型的输入,可以指导模型生成特定的输出。如果搭建过智能体就会知道,创建一个智能体首先要设置一些提示词。
- Token:token作为 AI 模型工作原理的基石,输入时,模型将单词转换为token,输出时,将token转换回单词。在现在的AI模型背景下,token就相当于金钱,一次调用的费用就越高。
- 模型的认知:一个模型的诞生需要在海量的训练集中进行学习,所以它的认知中没有未来的知识。如果想让模型对现有知识产生认知,有微调、检索增强生成 (RAG)、函数调用这几种方式。
对于本文示例中来说,每一次的对话就是模型的一次token输入和输出。
总结
Spring AI解决了AI集成的核心难题:即无缝连接企业数据、API与AI模型,同时也简化了Java 开发人员对AI应用的编程复杂度,还提供检索增强生成 (RAG)、函数调用等关键功能。对于Java 开发人员来讲,通过 Spring AI 可以探索更多的 AI 应用场景。