【数学基础知识】证明三角形的中线交于一点

本文通过初等几何知识证明了三角形的三条中线交汇于一点的定理,并详细展示了利用相似三角形原理来证明中线上特定点平分对边的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理

三角形的三条中线交于一点。

证明过程

用初中基础知识进行证明。

已知:
在这里插入图片描述

△ A B C \triangle ABC ABC中,F为BC的中点,E位AC的中点。AF,BE交于点G,直线CG交AB于D。

求证: A D = B D AD=BD AD=BD

证明:连接EF,交CD于H。

∵ B F = C F , A E = C E , \because BF=CF, AE=CE, BF=CF,AE=CE,

∴ E F   / /   A B ,    且   E F = 1 2 A B . \therefore EF \ /\kern -0.8em/ \ AB,\ \ 且\ EF = \frac{1}{2}AB. EF // AB,   EF=21AB. (连接三角形两个中点的线段平行于第三边)

∴ △ E F G ∽ △ B A G \therefore \triangle EFG\backsim \triangle BAG EFGBAG

∴ F G = 1 2 A G \therefore FG = \frac{1}{2}AG FG=21AG

同样 ∵ F H   / /   A D \because FH \ /\kern -0.8em/ \ AD FH // AD ∴ △ F G H ∽ △ A G D \therefore \triangle FGH \backsim \triangle AGD FGHAGD

∴ F H = 1 2 A D (1) \therefore FH = \frac{1}{2}AD \tag{1} FH=21AD(1)

△ C B D \triangle CBD CBD 中,F为CB中点,且 F H   / /   B D , ∴ FH \ /\kern -0.8em/ \ BD, \therefore FH // BD

F H = 1 2 B D (2) FH = \frac{1}{2} BD \tag{2} FH=21BD(2)

结合(1)式和(2)式可得

A D = B D AD = BD AD=BD

证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值