NLP 分词技术学习

分词

分词是将连续的中文字符串序列切分成有意义的词语序列的过程,是 NLP 的基础任务之一。需要掌握以下内容:

1. 分词方法

  • 基于规则/词典的方法(字符串匹配)

    • 正向最大匹配法(MM):从左到右扫描文本,匹配词典中最长的词。
    • 逆向最大匹配法(RMM):从右到左扫描文本,匹配词典中最长的词。
    • 双向最大匹配法:结合正向和逆向匹配,选择更合理的切分方式。
      • 更合理:比如选择词数更少,或者单个词的长度最少的方法。
    • 最短路径分词法:使切分后的词数最少。
  • 基于统计的方法

    • 隐马尔可夫模型(HMM):计算词语出现的概率,选择最优切分。
    • 条件随机场(CRF):考虑上下文信息,优化分词结果。
    • 互信息(MI):计算相邻字共现概率,判断是否成词。
  • 基于深度学习的方法

    • BiLSTM-CRF:结合双向LSTM和CRF,提高分词准确性。
    • BERT等预训练模型:利用Transformer架构进行端到端分词。

2. 分词工具

  • Jieba(Python):支持最大匹配、HMM、自定义词典。
  • HanLP(Java/Python):支持多种分词算法,如CRF、感知机等。
  • LTP(哈工大):支持分词、词性标注等任务。

3. 分词难点

  • 歧义切分(如“南京市长江大桥”可切分为“南京/市长/江大桥”或“南京市/长江大桥”)。
  • 未登录词识别(如新词、专有名词)。
  • 分词与NER的相互影响(如“苹果手机”是品牌名还是水果+手机?)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值