【数学分析】闭区间套定理及其证明


业余爱好者学习温故数学知识,做个记录。

闭区间套定理描述

如果数列 { a n } , { b n } \{a_n\}, \{ b_n \} {an},{bn}满足:
(1) a n − 1 ≤ a n ≤ b n ≤ b n − 1 ,      ∀ n a_{n-1} \leq a_n \leq b_n \leq b_{n - 1}, \ \ \ \ \forall n an1anbnbn1,    n
(2) lim ⁡ n → ∞ ( b n − a n ) = 0 \lim_{n \to \infty}(b_n - a_n) = 0 limn(bnan)=0
则有:
(1). 数列 { a n } , { b n } \{ a_n \}, \{ b_n \} {an},{bn}收敛与相同的极限值c。
lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = c \lim_{n \to \infty}a_n = \lim_{n \to \infty}b_n = c nliman=nlimbn=c
(2). c是满足以下条件的唯一实数:
a n ≤ c ≤ b n ,      ∀ n a_n \leq c \leq b_n, \ \ \ \ \forall n ancbn,    n

闭区间套定理理解

如果将 [ a k , b k ] [a_k, b_k] [ak,bk]看做一个闭区间,可以看到当 k k k逐渐增大时,前面的区间是包含后面的。即
[ a 1 , b 1 ] ⊃ [ a 2 , b 2 ] ⊃ . . . ⊃ [ a k , b k ] ⊃ . . . [a_1, b_1] \supset [a_2, b_2] \supset ... \supset [a_k, b_k] \supset ... [a1,b1][a2,b2]...[ak,bk]...
为闭区间的包含关系,所以叫闭区间套定理。定理的意思就是对于无穷的嵌套闭区间,最终一定是收敛的,而且收敛到了唯一的值。

闭区间套定理证明

证明: 对于数列 { a n } \{ a_n \} {an}, 有 a n − 1 ≤ a n a_{n-1} \leq a_n an1an,所以数列 { a n } \{ a_n \} {an}是一个单调递增数列。同时对于 ∀ n \forall n n, 都有 a n < b 1 a_n < b_1 an<b1, 即数列 { a n } \{ a_n \} {an}是有上界的,根据之前讲过的单调有界定理,单调递增数列如果有上界,那么其必定是收敛的, 设其收敛到 a a a, 即
lim ⁡ n → ∞ a n = a \lim_{n \to \infty}a_n = a nliman=a
同理数列 { b n } \{ b_n \} {bn}是一个单调递减有下界的数列,因此也是收敛的,设其收敛到 b b b, 即
lim ⁡ n → ∞ b n = b \lim_{n \to \infty}b_n = b nlimbn=b
下面证明 a = b a = b a=b。根据第二个条件 lim ⁡ n → ∞ ( b n − a n ) = 0 \lim_{n \to \infty}(b_n - a_n) = 0 limn(bnan)=0, 因为里面的 { a n } \{ a_n \} {an} { b n } \{ b_n \} {bn}都是收敛的,因此可以用极限的运算法则,将极限符号放到括号里面,即
lim ⁡ n → ∞ b n − lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty}b_n - \lim_{n \to \infty} a_n = 0 nlimbnnliman=0
b − a = 0 b - a = 0 ba=0, b = a。
因此第一个结论证毕,即 { a n } \{ a_n \} {an} { b n } \{ b_n \} {bn}收敛到了相同的极限值。

下面证明第二个结论, 即 { a n } \{ a_n \} {an} { b n } \{ b_n \} {bn} 收敛到的值是唯一的,且满足 a n ≤ c ≤ b n ,    ∀ n a_n \leq c \leq b_n, \ \ \forall n ancbn,  n

首先根据前面的证明,c为 { a n } \{ a_n \} {an}的上确界,同时是 { b n } \{ b_n \} {bn} 的下确界,因此一定有
a n ≤ c ≤ b n a_n \leq c \leq b_n ancbn

关于 c c c的唯一性,对于收敛数列,不难证明其收敛到的值一定是唯一的。因此 c c c自然唯一。

证毕。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数学分析中的重要定理 作者:杨艳萍,明清河 著 出版时间:2015年版 内容简介 《数学分析中的重要定理》是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。   《数学分析中的重要定理》从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。   《数学分析中的重要定理》可供数学及相关专业的本科生、研究生和从事数学分析的教学研究人员参考。 目录 第1章 微积分基本定理 1.1 微积分基本定理的历史演变 1.1.1 微积分基本定理的发现阶段 1.1.2 微积分基本定理的创立阶段 1.1.3 微积分基本定理的完善阶段 1.2 微积分基本定理的内容与证明 1.2.1 微积分第一基本定理及其证明 1.2.2 微积分第二基本定理及其证明 1.3 微积分基本定理的相关内容分析 1.3.1 微积分基本定理的条件与结论 1.3.2 微积分基本定理的意义与作用 1.3.3 两种形式微积分基本定理之间的关系 1.3.4 微积分基本定理与其他定理之间的关系 1.4 微积分基本定理的应用 1.4.1 求含有变限积分函数的导数 1.4.2 求含有变限积分函数的极限 1.4.3 求含有变限积分的函数方程的解 1.4.4 讨论含变限积分函数的性质 1.4.5 构造变限积分辅助函数,证明等式与不等式 1.4.6 利用微积分基本定理证明数学分析中的重要定理 1.4.7 利用牛顿莱布尼茨公式计算定积分 1.5 微积分基本定理的推广 1.5.1 原函数存在定理的推广 1.5.2 变限积分求导公式的推广 1.5.3 牛顿莱布尼茨公式的推广 参考文献 第2章 微分中值定理 2.1 微分中值定理的历史演变 2.1.1 对微分中值定理的初步认识 2.1.2 罗尔中值定理的演变 2.1.3 拉格朗日中值定理的演变 2.1.4 柯西中值定理的演变 2.1.5 泰勒中值定理的演变 2.2 微分中值定理的内容与证明 2.2.1 罗尔中值定理及其证明 2.2.2 拉格朗日中值定理及其证明 2.2.3 柯西中值定理及其证明 2.2.4 泰勒中值定理及其证明 2.3 微分中值定理的相关内容分析 2.3.1 微分中值定理的背景 2.3.2 微分中值定理的条件与结论 2.3.3 微分中值定理的意义与作用 2.3.4 四个微分中值定理之间的关系 2.3.5 微分中值定理的中值点 2.4 微分中值定理的应用 2.4.1 罗尔中值定理的应用 2.4.2 拉格朗日中值定理的应用 2.4.3 柯西中值定理的应用 2.4.4 泰勒中值定理的应用 2.5 微分中值定理的推广 2.5.1 罗尔中值定理的推广 2.5.2 拉格朗日中值定理的推广 2.5.3 柯西中值定理的推广 参考文献 第3章 积分中值定理 3.1 积分中值定理的历史演变 3.2 积分中值定理的内容与证明 3.2.1 积分第一中值定理及其证明 3.2.2 推广的积分第一中值定理及其证明 3.2.3 积分第二中值定理及其证明 3.2.4 加强条件的积分第二中值定理及其证明 3.3 积分中值定理的相关内容分析 3.3.1 积分中值定理的几何意义 3.3.2 积分中值定理的条件与结论 3.3.3 微分中值定理与积分中值定理之间的关系 3.3.4 积分中值定理的中值点 3.4 积分中值定理的应用 3.4.1 估计某些定积分的值 3.4.2 求含有积分的极限 3.4.3 证明含有积分的不等式 3.4.4 证明含有中值点的积分问题 3.4.5 讨论含积分函数的收敛性与单调性 3.5 积分中值定理的改进与推广 3.5.1 积分中值定理的改进 3.5.2 积分第一中值定理的推广 3.5.3 积分第二中值定理的推广 参考文献 第4章 积分关系定理 4.1 积分关系定理的历史演变 4.2 积分关系定理的内容与证明 4.2.1 格林公式及其证明 4.2.2 高斯公式及其证明 4.2.3 斯托克斯公式及其证明 4.3 积分关系定理的相关内容分析 4.3.1 各类积分的起源与几何意义 4.3.2 各类积分之间的关系 4.3.3 各类积分之间的转化 4.3.4 四个积分公式之间的关系 4.3.5 四个积分公式的统一形式 4.4 积分关系定理的应用 4.4.1 格林公式的应用 4.4.2 高斯公式的应用 4.4.3 斯托克斯公式的应用 4.5 积分关系定理的推广 4.5.1 格林公式的推广 4.5.2 高斯公式的推广 4.5.3 斯托克斯公式的推广 参考文献 第5章 极限关系定理 5.1 海涅定理的历史演变 5.2 海涅定理的内容与证明 5.3 海涅定理的相关内容分析 5.3.1 海涅定理的条件与结论 5.3.2 海涅定理的意义与作用 5.4 海涅定理的应用 5.4.1 证明函数极限不存在 5.4.2 证明函数极限的性质 5.4.3 求数列的极限 5.4.4 判断级数的敛散性 5.4.5 判断函数的可导性 5.4.6 证明函数为常量函数 5.5 海涅定理的推广 5.5.1 把任意数列 推广为单调数列 5.5.2 把 存在极限 推广为非正常极限 5.5.3 把函数极限存在推广为函数连续及单侧连续 5.5.4 把任意数列 推广为有理(无理)数列 5.5.5 把函数极限存在推广为含参变量广义积分一致收敛 参考文献 第6章 区间上连续函数的性质定理 6.1 区间上连续函数性质定理的历史演变 6.2 区间上连续函数性质定理的内容与证明 6.2.1 有界性定理及其证明 6.2.2 最值性定理及其证明 6.2.3 零点存在定理及其证明 6.2.4 介值性定理及其证明 6.2.5 一致连续性定理及其证明 6.3 区间上连续函数性质定理的相关内容分析 6.3.1 区间上连续函数性质定理的理解 6.3.2 区间上连续函数性质定理的几何意义 6.3.3 区间上连续函数性质定理的条件与结论 6.3.4 区间上连续函数性质定理的统一表述 6.4 区间上连续函数性质定理的推广 6.4.1 有界性定理的推广 6.4.2 最值性定理的推广 6.4.3 零点存在定理的推广 6.4.4 介值性定理的推广 6.4.5 一致连续性定理的推广 6.5 区间上连续函数性质定理的应用 6.5.1 有界性定理的应用 6.5.2 最值性定理的应用 6.5.3 零点存在定理的应用 6.5.4 介值性定理的应用 6.5.5 一致连续性定理的应用 参考文献 第7章 实数连续性(完备性)定理 7.1 实数连续性定理的历史演变 7.2 实数连续性定理的内容与证明 7.2.1 确界存在定理及其证明 7.2.2 单调有界定理及其证明 7.2.3 柯西收敛准则及其证明 7.2.4 区间定理及其证明 7.2.5 聚点定理及其证明 7.2.6 致密性定理及其证明 7.2.7 有限覆盖定理及其证明 7.3 实数连续性定理的相关内容分析 7.3.1 实数连续性定理的条件与结论 7.3.2 实数连续性定理的内在联系及等价性 7.3.3 实数连续性定理所提供的数学方法 7.3.4 实数连续性定理所提供的工具 7.4 实数连续性定理的推广 7.4.1 确界存在定理的推广 7.4.2 单调有界定理的推广 7.4.3 柯西收敛准则的推广 7.4.4 区间定理的推广 7.4.5 聚点定理的推广 7.4.6 致密性定理的推广 7.4.7 有限覆盖定理的推广 7.5 实数连续性定理的应用 7.5.1 确界存在定理的应用 7.5.2 单调有界定理的应用 7.5.3 柯西收敛准则的应用 7.5.4 区间定理的应用 7.5.5 聚点定理的应用 7.5.6 致密性定理的应用 7.5.7 有限覆盖定理的应用 参考文献 总参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值