字典树基本概念与代码演示

文章介绍了Trie树(字典树)的基本概念,作为用于快速查找和字符串排序的数据结构。它通过边表示字符,节点表示字符串集合,能以O(n)时间复杂度进行排序。文章提供了C++代码示例,展示了如何使用指针实现Trie树的插入和搜索功能,并探讨了用数组替代指针实现的版本,两者在逻辑上保持一致。
摘要由CSDN通过智能技术生成

基本概念

  1. 名称:Trie
  2. 其他名称:字典树,单词查找树
  3. 作用:
    单词查找
    字符串排序
    解释:字典树是存储字符串集合的一种数据结构,可以看成一种N叉树。每一条边表示一个字符。不同颜色的点表示当前截止到这个字符的字符串是否存在与集合中。例如对于如下字典树:
    在这里插入图片描述
    黄色的点表示当前截止的字符串存在,白色表示不存在,那么上面的字典树就表示如下字符串的集合:
a,
aae,
ac,
b,
gz,
gzf,
gzh

可以很明显看到从字典树的根节点入手可以进行字符串的查找。

此外构造字典树时还规定同一个节点出发的从左到右的边必须是有顺序的。

因此如果深度遍历一个字典树,那么遍历的结果就是升序的。

因此字典树也能做字符串的排序,而且排序的时间复杂度是O(n)的。

  1. 字典树的升华:
    树的节点 代表集合。 树的边代表关系。

在字典树中,特定的节点和边也代表了特定的集合和关系:

在这里插入图片描述

代码演示

插入与搜索操作

#include <iostream>
#include <algorithm>
#include <string>
#include <map>
#include <set>
#include <vector>
using namespace std;
#define BASE 26

class node {
	public:
		node () {
			flag = false;
			for (int i = 0; i < BASE; i++) next[i] = nullptr;
		}
		~node () {}
		bool flag;
		node *next[BASE];

};

class Trie {
	public:
		Trie () {
			root = new node();
		}
		static void clearTrie(node *root) {
			if (root == nullptr) return;
			for (int i = 0; i < BASE; i++) clearTrie(root->next[i]);
			delete root;
			return;
		}
		bool insert(string word) {
			//返回值表示是否第一次插入
			node *p = root;
			for (auto x : word) {
				int ind = x - 'a';
				if (p->next[ind] == nullptr) {
					p->next[ind] = new node();
				}
				p = p->next[ind];
			}
			if (p->flag) return false;
			p->flag = true;
			return true;
		}

		bool search(string word) {
			node *p = root;
			for (auto x : word) {
				int ind = x - 'a';
				p = p->next[ind];
				if (p == nullptr) return false;
			}
			return p->flag;
		}

		~Trie () {
			clearTrie(root);
		}

	private:
		node * root;

};

int main() {
	//   字典树插入和查找代码
	Trie t;
	int op;
	string s;
	while (cin >> op >> s) {
		switch (op) {
			case 1: t.insert(s); break;
			case 2: cout << "search word = " << s << " result : "  << t.search(s) << endl; break;
		}
	}

代码运行结果:

1 aaa
1 hello
1 abc
1 world
1 bca
1 acc
2 hello
search word = hello result : 1
2 abc
search word = abc result : 1
2 a
search word = a result : 0
2 hell
search word = hell result : 0
2 ac
search word = ac result : 0
2 acc
search word = acc result : 1

排序操作

#include <iostream>
#include <algorithm>
#include <string>
#include <map>
#include <set>
#include <vector>
using namespace std;
#define BASE 26

class node {
	public:
		node () {
			flag = false;
			for (int i = 0; i < BASE; i++) next[i] = nullptr;
		}
		~node () {}
		bool flag;
		node *next[BASE];

};

class Trie {
	public:
		Trie () {
			root = new node();
		}
		static void clearTrie(node *root) {
			if (root == nullptr) return;
			for (int i = 0; i < BASE; i++) clearTrie(root->next[i]);
			delete root;
			return;
		}
		bool insert(string word) {
			//返回值表示是否第一次插入
			node *p = root;
			for (auto x : word) {
				int ind = x - 'a';
				if (p->next[ind] == nullptr) {
					p->next[ind] = new node();
				}
				p = p->next[ind];
			}
			if (p->flag) return false;
			p->flag = true;
			return true;
		}

		bool search(string word) {
			node *p = root;
			for (auto x : word) {
				int ind = x - 'a';
				p = p->next[ind];
				if (p == nullptr) return false;
			}
			return p->flag;
		}

		void dfs(node * Node, string prePath) {
			if (Node == nullptr) return;
			if (Node->flag) cout << prePath << " ";
			for (int ind = 0; ind < BASE; ind++) {
				dfs(Node->next[ind], prePath + char('a' + ind));
			}
		}

		void output() {
			dfs(root, "");
			cout << endl;
		}

		~Trie () {
			clearTrie(root);
		}

	private:
		node * root;

};

int main() {
	//字典树用作字符串排序
	
	Trie t;
	int n;
	cin >> n;
	string s;
	for (int i = 0; i < n; i++) {
		cin >> s;
		t.insert(s);
	}
	t.output();
	return 0;
}

程序运行结果:

input: 
4
aaa
abc
bca
acc

output:
aaa abc acc bca

用数组代替指针实现字典树

#include <iostream>
#include <algorithm>
#include <string>
#include <map>
#include <set>
#include <vector>
using namespace std;
#define BASE 26

class node {
	public:
		int flag;
		int next[BASE]; //每一个节点在数组中的下标
		void clear() {
			flag = 0;
			for (int i = 0; i < BASE; i++) {
				next[i] = 0;
			}
		}
} trie[10000];

int cnt = 2, root = 1;
void clearTie() {
	int cnt = 2; //能够使用的节点的第一个编号
	int root = 1; //根节点的编号
	trie[root].clear();
	return;
}

int getNewNode() {
	trie[cnt].clear();
	return cnt++;
}

void insert(string s) {
	int p = root;
	for (auto x : s) {
		int ind = x - 'a';
		if (trie[p].next[ind] == 0) {
			trie[p].next[ind] = getNewNode();
		}
		p = trie[p].next[ind];
		printf("insert ind %d, p %d\n", ind, p);
	}
	trie[p].flag = 1;
	return;
}

bool search (string s) {
	int p = root;
	for (auto x : s){
		int ind = x - 'a';
		p = trie[p].next[ind];
		printf("search ind %d, p %d\n", ind, p);
		if (p == 0) {
			return false;
		}

	}
	return trie[p].flag;
}

int main() {
	cout << "trie version 2 : " << endl;
	clearTie();
	printf("cnt : %d, root : %d\n", cnt, root);
	int op;
	string s;
	while (cin >> op >> s) {
		switch (op) {
			case 1: insert(s); break;
			case 2: cout << "search word = " << s << " result : "  << search(s) << endl; break;
		}
	}
	return 0;
}

可以和指针实现的字典树对比发现:

  1. 之前的所有节点用一个指针表示,新建节点时新建一个地址指针;现在为所有节点提前申请一个节点数组空间
  2. 对于单个node, 之前存储flag和next[BASE], 每一个next都是下一个节点的地址,为null表示没有下一个节点
  3. 现在的单个node, 同样存储flag和next[BASE], 每一个next都是int类型,表示节点的编号,为0表示没有下一个节点
  4. 之前的插入节点操作判断下一个节点是否为空,然后插入,当前节点p下移; 现在改成数组以后是判断下一个节点是否为0, 然后新建节点、当前节点p下移
  5. 之前的搜索操作是依次判断当前的下一个节点是否为空,现在是依次判断当前节点的下一个节点是否为0

总结:用数组的实现和用指针的常规实现思路是完全一样的,只是同一种思维换了一种代码实现形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值