你在这儿"刷存在",你爸妈知道吗?

作者:尹小隐

屌丝在女神那儿的存在感,基本上也就是备胎和千斤顶。不懂啥意思?请自行搜索。

所谓女(男)神有三宝:干吗,呵呵,去洗澡。比这还惨的,无疑是连"三宝"都没有。如果你往湖里扔块石头却没听见响,那是什么感觉?世界上最让人抓狂的事情里,一定包括你憋不住和对方说了几句话,过去了24小时没回音。
但是我们为什么非得要这个回音呢?

刷存在的原因,说白了,还是因为不甘寂寞。你想被肯定,想被表扬,想被点"赞"。你上传照片,就差对所有人大声喊"快来看看我"了。这也怪不得你,谁让这真的是一个比赛刷存在的时代!我们生活在这么一个浮华世道中,想不受影响,那得有多高的修为才能做到啊!

我们的确太需要与他人的交流,也太容易用别人的反应作为评判自己的标准。我们还会不由自主地去注意别人的受欢迎,把时间都用来为"怎么还没有人回复"、"有多少人赞了"这种事操心。
有一个朋友,热衷于"瞪小屏",即使是上班的时候,有事没事也要拿出手机来看两眼。她曾经的领导总结说,她平均每五分钟就要看一次手机,不管是不是有新信息。"我也不想这样,但每天发的内容,要是没人点赞没人评论,就很失落。如果不发些什么,看着朋友圈里那么热闹,又觉得自己凹凸曼。"

如果用马斯洛的人的需求理论来粗略研究下"刷存在感"这事儿,你会发现它还挺有必要,因为五种需求里面的三种:要社交、要尊重和要自我实现,它都多多少少可以满足。

编"挖哪强"之类的段子,当"标题党", 在1楼发个镇楼美女图,集赞……我们探索出很多办法来吸引眼球,显示自己的存在。
可是,你在这儿刷存在感,你爸妈知道吗?

我们究竟是有多不自信,多焦虑,才会每天"猴"在贴吧微博微信人人上,通过各种更新来刷存在感?归根结底,我们刷存在感,是在证明自己存在着,或存在过。今天的很多年轻人,因为独生,因为宅,缺乏和人群的实际联系,只能依靠网络来刷存在感。

一位朋友在微信里这样说:你们看到这货在喝茶,看不到这货被工作逼得恨不得撞墙;你们看到这货在卖弄风情,看不到这货心痛得滴血;你们看到这货在享受美食,看不到这货为一些事愁得夜不能寐;你们看见这货去欧洲小镇发呆了,不知道这货觉得自己的人生就像掉进粪坑。但不管怎样,只要这货还能在微信上得瑟,说明他还活着,而且心里还有一点自尊和一些对美好的执着。
不被人理会,无论在哪都不能说是愉快的体验。但如果一个人非得靠别人的关注才能找到存在感,不是很可悲吗?说到底,我们刷存在感,是因为我们自己太弱。可以说,真正的存在感,还是得建立在雄厚的基础上。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值