unet 网络

问题1:'Keyword argument not understood:', 'input

删去input=,output=

论文的几个创新点:数据增强,

论文用的一些方法:数据增强,数据的二值化

神经网络的训练:

遇到的一些问题:1、读取数据时一开始用libtiff读取tif格式图片一直导入不成功,后来更换成cv.imgread

2.tensorflow 调用adam函数时出现错误,通过查阅资料得知是Adam.keras版本需要匹配。

网络的版本号

主要结构:一个语义分割模型,encoder-decoder结构,u字形(论文中的输入大小是512*512,但这副图里给的是572*572,图片数据经过处理

特点:U型结构和skip-connection

/白色框表示 feature map;蓝色箭头表示 3x3 卷积,用于特征提取;灰色箭头表示 skip-connection,用于特征融合;红色箭头表示池化 pooling,用于降低维度;绿色箭头表示上采样 upsample,用于恢复维度;青色箭头表示 1x1 卷积,用于输出结果

UNet的encoder下采样4次,一共下采样16倍,对称地,其decoder也相应上采样4次,将encoder得到的高级语义特征图恢复到原图片的分辨率。

Skip connection打破了网络的对称性,提升了网络的表征能力,关于对称性引发的特征退化问题  残差连接(skip connect)/(residual connections)_赵凯月的博客-CSDN博客

医疗影像有什么样的特点:图像语义较为简单、结构较为固定。我们做脑的,就用脑CT和脑MRI,做胸片的只用胸片CT,做眼底的只用眼底OCT,都是一个固定的器官的成像,而不是全身的。由于器官本身结构固定和语义信息没有特别丰富,所以高级语义信息和低级特征都显得很重要(UNet的skip connection(残差连接)和U型结构就派上了用场)。举两个例子直观感受下。

U-net 基于pytorch的代码:

import torch

import torch.nn as nn

import torch.nn.functional as F





class double_conv2d_bn(nn.Module):

def __init__(self, in_channels, out_channels, kernel_size=3, strides=1, padding=1):

初始化网络

        super(double_conv2d_bn, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels,

                               kernel_size=kernel_size,

                               stride=strides, padding=padding, bias=True)

        self.conv2 = nn.Conv2d(out_channels, out_channels,

                               kernel_size=kernel_size,

                               stride=strides, padding=padding, bias=True)

        self.bn1 = nn.BatchNorm2d(out_channels)

        self.bn2 = nn.BatchNorm2d(out_channels)



    def forward(self, x):

        out = F.relu(self.bn1(self.conv1(x)))

        out = F.relu(self.bn2(self.conv2(out)))

        return out





class deconv2d_bn(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=2, strides=2):

        super(deconv2d_bn, self).__init__()

        self.conv1 = nn.ConvTranspose2d(in_channels, out_channels,

                                        kernel_size=kernel_size,

                                        stride=strides, bias=True)

        self.bn1 = nn.BatchNorm2d(out_channels)



    def forward(self, x):

        out = F.relu(self.bn1(self.conv1(x)))

        return out





class Unet(nn.Module):

    def __init__(self):

        super(Unet, self).__init__()

        self.layer1_conv = double_conv2d_bn(1, 8)

        self.layer2_conv = double_conv2d_bn(8, 16)

        self.layer3_conv = double_conv2d_bn(16, 32)

        self.layer4_conv = double_conv2d_bn(32, 64)

        self.layer5_conv = double_conv2d_bn(64, 128)

        self.layer6_conv = double_conv2d_bn(128, 64)

        self.layer7_conv = double_conv2d_bn(64, 32)

        self.layer8_conv = double_conv2d_bn(32, 16)

        self.layer9_conv = double_conv2d_bn(16, 8)

        self.layer10_conv = nn.Conv2d(8, 1, kernel_size=3,

                                      stride=1, padding=1, bias=True)



        self.deconv1 = deconv2d_bn(128, 64)

        self.deconv2 = deconv2d_bn(64, 32)

        self.deconv3 = deconv2d_bn(32, 16)

        self.deconv4 = deconv2d_bn(16, 8)



        self.sigmoid = nn.Sigmoid()



    def forward(self, x):

        conv1 = self.layer1_conv(x)

        pool1 = F.max_pool2d(conv1, 2)



        conv2 = self.layer2_conv(pool1)

        pool2 = F.max_pool2d(conv2, 2)



        conv3 = self.layer3_conv(pool2)

        pool3 = F.max_pool2d(conv3, 2)



        conv4 = self.layer4_conv(pool3)

        pool4 = F.max_pool2d(conv4, 2)



        conv5 = self.layer5_conv(pool4)



        convt1 = self.deconv1(conv5)

        concat1 = torch.cat([convt1, conv4], dim=1)

        conv6 = self.layer6_conv(concat1)



        convt2 = self.deconv2(conv6)

        concat2 = torch.cat([convt2, conv3], dim=1)

        conv7 = self.layer7_conv(concat2)



        convt3 = self.deconv3(conv7)

        concat3 = torch.cat([convt3, conv2], dim=1)

        conv8 = self.layer8_conv(concat3)



        convt4 = self.deconv4(conv8)

        concat4 = torch.cat([convt4, conv1], dim=1)

        conv9 = self.layer9_conv(concat4)

        outp = self.layer10_conv(conv9)

        outp = self.sigmoid(outp)

        return outp





model = Unet()

inp = torch.rand(10, 1, 224, 224)

outp = model(inp)

print(outp.shape)

最终结果:

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UNET是一种深度学习网络模型,用于图像分割任务,特别是在医学图像分割领域中表现出色。Drive是指UNET网络在医学图像分割中应用于检测和分割人脑磁共振图像中的肿瘤和病灶。UNET通过将图像输入网络,经过一系列卷积、池化等操作,在压缩表示层和解压缩表示层之间建立有效的连接,实现对图像中不同区域的像素进行分类和分割。在Drive中,UNET网络能够对磁共振图像中的肿瘤和病灶进行自动定位和分割,为医生提供提前发现和诊断疾病的支持。 UNET网络的优势在于其完备的网络结构,它具有编码器和解码器,能够有效地捕捉不同尺度下的图像特征,从而实现更准确的分割结果。此外,UNET还采用了跳跃连接,可以将编码器和解码器之间的信息传递进行优化,以提高分割结果的精度。 UNET网络在医学图像分割领域的应用非常广泛,特别是在病灶和病变分割方面具有很大的潜力。通过与传统的图像分割方法相比,UNET网络在精度和性能上都有很大的突破。同时,UNET网络的设计使得它在训练时只需要较少的样本,具有较强的泛化能力,可以应用于各种不同类型的医学图像分割任务。 总之,UNET网络在医学图像分割中的应用,特别是在人脑磁共振图像中的肿瘤和病灶检测与分割方面,展示出了出色的性能和潜力,为医生提供了更准确的病灶信息,有助于改善疾病诊断和治疗。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值