UNet 、3D-UNet 、VNet 区别

本文介绍了三种常用的医学图像分析模型:UNet、3D-UNet和VNet。UNet以U型结构和skip-connection为特点;3D-UNet将2D操作扩展到3D,适合处理体积数据;VNet引入残差连接,并用卷积层替代池化层,专为3D图像设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UNet 、3D-UNet 、VNet 区别

医学图像的几个常用模型,简单总结一下。

三个model的代码在我的Github上,可以参考一下:https://github.com/VickyLLY/unet_and_vnet

一、UNet

在这里插入图片描述

创新点:

U型结构,下采样,上采样;短接通道(skip-connection)

二、3D-UNet

技术分享图片

2D结构的U-Net是基本一样,唯一不同:2D操作换成了3D

好处:三维图像就不需要单独输入每个切片进行训练,而是可以采取图片整张作为输入到模型中

详细解读可以看:3D U-Net论文解析

三、VNet

在这里插入图片描述

Vnet是针对3D图像提出来模型。

创新:

1、引入残差,水平向的残差连接采用element-wise;

2、卷积层代替上采样和下采样的池化层。

ment-wise;

2、卷积层代替上采样和下采样的池化层。

详细Vnet和Unet对比:Unet和Vnet

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值