LeetCode——739每日温度

本文介绍了一种使用栈数据结构优化气温预测算法的方法,解决了原始for循环解决方案中时间复杂度过高的问题,将时间复杂度从N^2降低到O(n),同时保持了O(n)的空间复杂度。通过实例演示了如何利用栈来高效地计算每日气温升至更高温度所需天数。
摘要由CSDN通过智能技术生成

问题描述:

根据每日 气温 列表,请重新生成一个列表,对应位置的输入是你需要再等待多久温度才会升高超过该日的天数。如果之后都不会升高,请在该位置用 0 来代替。

例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。

提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/daily-temperatures
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

执行结果:

直接用for循环,没有考虑到时间复杂度为N^2,结果就成了这样。既然在复习栈,那么用栈应该才是王道。优化一下。

借助栈实现,时间复杂度O(n),空间复杂度O(n)。

代码描述:

// for循环解决,耗时严重
class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& T) {
        vector<int> day;
        if(T.size() == 0 || T.size() == 1)   
        {
            day.push_back(0);
            return day;
        }
        int base = 0;
        bool flag;
        for(int j = 0; j < T.size()-1; ++j)
        {
            flag = true;
            base = T[j];
            for(int i = j+1; i < T.size(); ++i)
            {
                if(base < T[i])
                {
                    flag = false;
                    day.push_back(i-j);
                    break;
                }
            }
            if(flag)
            {
                day.push_back(0);
            }
        }
        day.push_back(0);
        return day;
    }
};
// 用栈实现,时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& T) {
        vector<int> day(T.size(), 0);         // 声明一个vector,大小size,初始化为0
        stack<int> stk;
        int index;
        for(int i = 0; i < T.size(); ++i)
        {
            while(!stk.empty() && T[stk.top()] < T[i])
            {
                index = stk.top();    // 取出
                stk.pop();            // 弹栈
                day[index] = i - index;    // 求差值,即为升温需要的天数,赋值给vector
            }
            stk.push(i);    // 对i进行处理之后,将i压栈,用于后面的对比处理。
        }
        return day;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值