数据结构入门(java版)(八)

集合和映射的内容

集合

集合中是不允许存在相同元素的,之前我实现的二分搜索树在加入相同元素时是直接进行覆盖
集合的接口函数

public interface Set<E> {
    void add(E e);
    void remove(e E);
    boolean contains(E e);
    int getSize();
    boolean isEmpty();
}

使用二分搜索树实现集合

public class BSTSET<E extends Comparable<E>> implements Set<E> {
    private BST<E> bst;

    public BSTSET(){
        bst = new BST<>();
    }

    @Override
    public int getSize(){
        return bst.size();
    }

    @Override
    public boolean isEmpty(){
        return bst.isEmpty();
    }

    @Override
    public void add(E e){
        bst.add(e);
    }

    @Override
    public void remove(e E) {
        return;
    }

    @Override
    public boolean contains(E e){
        return bst.contains(e);
    }
}

只是将BST中原有的函数重新封装一遍。

映射

Map, 存储一种键值对关系的数据结构
映射的接口函数

public interface Map<K, V> {
    void add(K key, V value);
    V remove(K key);
    boolean contains(K key);
    V get(K key);
    void set(K key, V newValue);
    int getSize();
    boolean isEmpty();
    /*
    最主要的几个方法:
    增删改查
     */
}

使用链表实现的map

import java.util.ArrayList;


// 基于链表的映射实现
public class LinkedListMap<K, V> implements Map<K, V> {

    private class Node{
        public K key;
        public V value;
        public Node next;

        public Node(K key, V value, Node next){
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public Node(K key){
            this(key, null, null);
        }

        public Node(){
            this(null, null, null);
        }

        @Override
        public String toString(){
            return key.toString() + ": " + value.toString();
        }
    }

    private Node dummyHead;   // 设置虚拟头节点
    private int size;

    public LinkedListMap(){
        dummyHead = new Node();
        size = 0;
    }

    // 获取链表元素个数
    @Override
    public int getSize(){
        return size;
    }

    // 判断链表是否为空
    @Override
    public boolean isEmpty(){
        return size == 0;
    }

    // 获得该键对应的节点
    private Node getNode(K key){
        Node cur = dummyHead.next;

        while (cur != null){
            if (cur.key.equals(key)){
                return cur;
            }
            cur = cur.next;
        }

        return null;
    }

    @Override
    public boolean contains(K key){
        return getNode(key) != null;
    }

    @Override
    public V get(K key){
        Node node = getNode(key);
        return node == null ? null : node.value;
    }

    @Override
    public void add(K key, V value){

        Node node = getNode(key);
        if (node == null){
            dummyHead.next = new Node(key, value, dummyHead.next);
            size ++;
        }
        else{
            node.value = value;
        }
    }

    @Override
    public void set(K key, V newValue){

        Node node = getNode(key);
        if (node ==null){
            throw new IllegalArgumentException(key + " doesn't exits");
        }

        node.value = newValue;
    }


    @Override
    public V remove(K key){

        Node prev = dummyHead;
        while (prev.next != null){
            if (prev.next.key.equals(key))
                break;
            prev = prev.next;
        }

        if (prev.next != null){
            Node delNode = prev.next;
            prev.next = delNode.next;
            delNode.next = null;
            size --;
            return delNode.value;
        }

        return null;
    }

    public static void main(String[] args) {
        // write your code here

        System.out.println("Pride and Prejudice");

        ArrayList<String> words = new ArrayList<>();

        if (FileOperation.readFile("e:/java/Preide and Prejudice.txt", words)){

            System.out.println("Total words: " + words.size());

            LinkedListMap<String, Integer> map = new LinkedListMap<>();

            for (String word: words){
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }
            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("p") );
        }
    }
}

使用二分搜索树实现的map

import java.util.ArrayList;

// 基于二分搜索树的映射实现
public class BSTMap<K extends Comparable<K>, V> implements Map<K, V> {

    private class Node{
        public K key;
        public V value;

        public Node left, right;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;


    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    // 向二分搜索树中添加新的元素(key, value)
    @Override
    public void add(K key, V value) {
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else    // key.compareTo(node.key) == 0
            node.value = value;

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if (node == null)
            return null;

        if (key.compareTo(node.key) == 0)
            return node;
        else if (key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else    // if (key.compareTo(node.key)) > 0
            return getNode(node.right, key);
    }

    @Override
    public boolean contains(K key) {
        return getNode(root, key) != null;
    }


    @Override
    public V get(K key) {
        Node node = getNode(root, key);

        return node == null ? null : node.value;
    }

    // 更新操作
    @Override
    public void set(K key, V newValue) {
        Node node = getNode(root, key);

        if (node == null)
            throw new IllegalArgumentException(key  + " deesn`t exists");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){

        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }


    // 从二分搜索树中删除键为key的节点
    @Override
    public V remove(K key) {

        Node node = getNode(root, key);
        if (node != null){
            root = remove(root, key);
            return node.value;
        }

        return null;
    }


    // 删除以node为根的二分搜索树中键为key的节点,递归算法
    // 返回删除节点后新的二分搜索树的根
    private Node remove(Node node, K key){

        if (node == null){
            return null;
        }

        if (key.compareTo(node.key) < 0){
            node.left = remove(node.left, key);
            return node;
        }
        else if (key.compareTo(node.key) > 0){
            node.right = remove(node.right, key);
            return node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if (node.left == null){
                // 此时的node为待删除节点
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;   // 返回右子树根节点
            }

            // 待删除节点右子树为空的情况
            if (node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }

            // 待删除节点左右子树都不为空的情况
            // 找到比待删除节点大的节点, 即待删除节点右子树的最小节点
            // 或比待删除结点小的节点,即左子树最大节点
            // 用这个节点顶替待删除节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;

            return successor;
        }
    }
}

这是读文件的操作

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Locale;
import java.util.Scanner;

public class FileOperation {

    // 读取文件名称为filename中的内容,并将其中包含的左右词语放进words中
    public static boolean readFile(String filename, ArrayList<String> words){

        if (filename == null || words == null){
            System.out.println("filename is null or words is null");
            return false;
        }

        // 文件读取
        Scanner scanner;

        try{
            File file = new File(filename);
            if (file.exists()){
                FileInputStream fis = new FileInputStream(file);
                scanner = new Scanner(new BufferedInputStream(fis), "UTF-8");
                scanner.useLocale(Locale.ENGLISH);
            }
            else{
                return false;
            }
        }
        catch (IOException ioe){
            System.out.println("Cannot open "+ filename);
            return false;
        }

        // 简单分词
        // 这个分词相对简陋,没有考虑文本处理中的特殊问题
        // 在这里只做demo展示
        if (scanner.hasNextLine()){
            String contents = scanner.useDelimiter("\\A").next();

            int start = firstCharacterIndex(contents, 0);
            for (int i = start + 1; i <= contents.length(); ){
                if (i == contents.length() || !Character.isLetter(contents.charAt(i))){
                    String word = contents.substring(start, i).toLowerCase();
                    words.add(word);
                    start = firstCharacterIndex(contents, i);
                    i = start + i;
                }
                else{
                    i++;
                }
            }
        }

        return true;
    }


    // 寻找字符串s中,从start的位置开始的第一个字母字符的位置
    private static int firstCharacterIndex(String s, int start){

        for (int i = start; i < s.length(); i ++){
            if (Character.isLetter(s.charAt(i)))
                return i;
        }
        return s.length();
    }
}

还可以使用AVL平衡二叉树实现map,运算速度更快

// 通过底层为AVLTree实现AVLMap

public class AVLMap<K extends Comparable<K>, V> implements Map<K, V>{

    private AVLTree<K, V> avl;

    public AVLMap(){
        avl = new AVLTree<>();
    }


    @Override
    public void add(K key, V value) {
        avl.add(key, value);

    }

    @Override
    public V remove(K key) {
        return avl.remove(key);
    }

    @Override
    public boolean contains(K key) {
        return avl.contains(key);
    }

    @Override
    public V get(K key) {
        return avl.get(key);
    }

    @Override
    public void set(K key, V newValue) {
        avl.set(key, newValue);
    }

    @Override
    public int getSize() {
        return avl.getSize();
    }

    @Override
    public boolean isEmpty() {
        return avl.isEmpty();
    }
}

后面等学到AVL时写实现原理

这三种底层实现的map进行比较

import java.util.ArrayList;

public class Main {

    private static double testMap(Map<String, Integer> map, String filename){
        // 词频统计
        long startTime = System.nanoTime();

        System.out.println(filename);

        ArrayList<String> words = new ArrayList<>();

        if (FileOperation.readFile("e:/java/" + filename, words)){

            System.out.println("Total words: " + words.size());

            for (String word: words){
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }
            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of a: " + map.get("a") );
        }

        long endTime = System.nanoTime();

        return (endTime - startTime) / 1000000000.0;
    }

    public static void main(String[] args) {
	// write your code here
        String filename = "E:/java/Map/PAP.txt";
        BSTMap<String, Integer>bstMap = new BSTMap<>();
        double time1 = testMap(bstMap, filename);
        System.out.println("BSTMap : " + time1 + " s");

        LinkedListMap<String, Integer> linkedListMap = new LinkedListMap<>();
        double time2 = testMap(bstMap, filename);
        System.out.println("LinkedListMap : " + time2 + " s");

        AVLMap<String, Integer> avlMap = new AVLMap<>();
        double time3 = testMap(avlMap, filename);
        System.out.println("AVLMap : " + time3 + " s");
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值