Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Netwo

author:Xiaolei Ma 1, Zhuang Dai 1, Zhengbing He 2, Jihui Ma 2,*, Yong Wang 3 and Yunpeng Wang

time:2017

链接:https://www.mdpi.com/1424-8220/17/4/818/html

摘要

本文提出了一种基于卷积神经网络(CNN)的流量学习方法,该方法将流量作为图像来学习,并对大规模、全网范围内的流量速度进行高精度预测。将时空交通动力学转化为二维时空矩阵描述交通流时空关系的图像,将CNN应用到图像中,通过两个连续的步骤:抽象的交通特征提取和网络范围内的交通速度预测。评估了该方法的有效性通过两个真实的交通网络,北京的二环路和东北交通网络,并且和四个比较的方法有四个主流算法,即普通最小二乘法,k近邻法、人工神经网络和随机森林,和三个深度学习架构,即自编码器、递归神经网络和LSTM网络。结果表明,在可接受的执行时间内,该方法的平均准确率比其他算法提高了42.91%。CNN可以在合理的时间内对模型进行训练,适用于大型交通网络。

关键词:交通网络;交通速度预测;深度学习;卷积神经网络;时空特征

一、介绍

预测未来是人类最感兴趣的话题之一,交通管理也是如此。了解整个道路网络而不是单一道路上的交通演化,对于帮助拥有完整交通信息的人们更好地选择道路,以及支持交通管理者对道路网络进行管理和系统地分配资源具有重要意义。

然而,大规模网络流量预测模型预测需要更具有竞争性的能力,如能够处理更高的计算复杂性产生的网络拓扑结构,能够形成一个更聪明和高效的预测来解决交通道路的空间相关性扩大一个二维平面上,并能预测长期特征反映拥堵传播。不幸的是,传统的交通预测模型通常将交通速度视为连续的数据,由于推理和假设、无法处理异常值、噪声或丢失的数据等限制,无法提供这些能力,无法应对高维数据。因此,现有的模型可能无法预测大规模的网络流量演化。

在已有的文献中,交通预测的研究方法主要有两大类:统计方法和神经网络。

统计技术在交通预测中得到了广泛的应用。例如,根据交通演进的周期性,利用非参数模型,如k近邻(KNN)来预测交通速度和流量,当然也可以使用更高级的模型,包括支持向量机(SVM),季节性支持向量机,在线支持向量机,在线顺序极值学习机,通过捕捉交通流的高动态和敏感性来提高预测的准确性。SVM在大规模交通速度预测中的性能可以进一步提高。
交通流量预测采用多变量非参数回归方法,最近,大量的文献利用多种混合模型和时空特征来提高交通预测性能。

考虑到交通变量连续时间序列的相关性,时间序列预测模型在交通预测中得到了广泛的应用,典型的模型之一是自回归综合移动平均(ARIMA)模型,该模型考虑了基本的交通流特征,例如固有的相关性(通过移动平均)及其对短期未来的影响(通过自回归)。到目前为止,该模型及其扩展,如季节性ARIMA模型、KARIMA模型、ARIMAX模型等都得到了广泛的研究和应用。综上所述,统计方法在交通预测中得到了广泛的应用,并取得了良好的效果。然而,这些模型忽略了交通网络的重要时空特征,不能用于大规模网络的总体交通预测。支持向量机在训练时通常需要较长的时间和消耗大量的计算机内存,因此在大型数据相关应用中可能无能为力。

人工神经网络具有处理多维数据的能力、实现的灵活性、通用性和较强的预测能力等优点,也常被应用于交通预测问题。例如,Huang和Ran使用ANN来预测恶劣天气条件下的交通速度。Park等人提出了一种基于神经网络的实时车速预测算法。郑等人将神经网络与贝叶斯定理相结合,对高速公路短期交通流进行了预测。Moretti等人的[23]提出了一个统计和神经网络bagging集成混合模型来预测城市交通流。

然而,人工神经网络的数据驱动机制并不能很好地解释道路网络的空间相关性。此外,与深度学习方法相比,由于ANN的体系结构较浅,预测精度较低。近年来,更先进、更强大的深度学习模型被应用于交通预测。例如,Polson和Sokolov[24]使用深度学习架构来预测交通流。黄等人首先引入了深度信念交通网络(DBN)的研究。然后,Tan等人[26]比较了DBNs与两种RBM结构的性能,即RBM与二进制可见和隐藏单元(B-B RBM)和RBM与高斯可见单元和二进制隐藏单元(G-B RBM),发现前者在交通流预测方面优于后者。Ma等人将深度受限波尔兹曼机(deep restricted Boltzmann machines, RBM)与递归神经网络(neural network, RNN)相结合,形成了一个继承了RBM和RNN优点的RBM-RNN模型。Lv等人提出了一种新的基于深度学习的交通预测模型,该模型考虑了时空关系,利用堆栈自编码器(SAE)提取交通特征。Duan等人的[29]使用去噪堆叠自编码器(DSAE)的交通数据输入。Ma等人将长短时记忆神经网络(LSTM NN)引入到流量预测中,并证明了LSTM神经网络在这稳定性和准确性方面都优于其他神经网络的交通速度预测,通过使用远程微波传感器数据收集自北京路网(利用遥感微波传感器从北京道路网采集数据。)

与人工神经网络相比,深度学习方法利用了更深入、更复杂的体系结构,能够取得比传统方法更好的学习效果。然而,这些尝试仍然主要集中在预测一个路段或一个小的网络区域的交通。很少有研究把交通网络作为一个整体来考虑,直接大规模地估计交通演进。更重要的是,这些模型大多只考虑了单个位置的流量演化的时间相关性,而没有从网络的角度考虑其空间相关性。

为了弥补这一不足,本文提出了一种基于图像的方法,将网络流量表示为图像,利用卷积神经网络(CNN)的深度学习结构提取图像所包含的时空流量特征。CNN是一种高效的图像处理算法,在计算机视觉和图像识别领域得到了广泛的应用,取得了

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值