Traffic speed prediction for urban transportation network: A path based deep learning approach

题目:城市交通网络的交通速度预测:一种基于路径的深度学习方法

年份:2019

成员机构:中山大学、广州大学、深圳网络安全实验室

论文链接:https://www.sciencedirect.com/science/article/pii/S0968090X1831043X?via%3Dihub

摘要

交通预测作为智能交通系统的重要组成部分,在交通状态监测中起着至关重要的作用。虽然许多研究已经使用深度学习模型完成了交通预测任务,但利用时空交通状态特征来获得更好的预测性能仍是一个有待解决的问题,模型的可解释性还没有得到重视。在本研究中,我们提出了一个基于路径的深度学习框架,可以在城市范围内产生更好的交通速度预测,而且该模型是合理和可解释的。具体来说,我们将城市路网划分为许多关键路径,有助于挖掘交通流机制。然后,通过双向长短时记忆网络对每个关键路径进行建模,多个LSTM层被堆叠起来以合并时间信息。在交通预测阶段,从这些过程中获取的时空特征被送入一个全连接层。最后,对每条路径的结果进行综合,用于速度预测。在实验中,我们将提出的模型与之前的多种基本方法进行了比较,在一系列预测情境下,我们所提出的框架效果更好。此外,通过分析隐藏层的输出特征。解释了隐藏特征的物理意义,并说明了模型的可解释性。

关键词:交通速度预测、城市路网、深度学习、双向长短时记忆网络、模型可解释性

方法

在图1中,一个基于路径的深度学习框架被呈现出来。给定由一系列路段组成的路径,我们认为,规律性的交通流往往出现在最常用的交通路径上,这些路径被定义为关键路径。正是由于交通流决定了每一个路段上的交通状态。我们可以通过分析关键路径对这些路段的时空特性有一个深入的认识。基本思想就是从历史轨迹中得到关键路段,每一个路径都可以通过LSTM建模,命名为Path-LSTM。然后,将Path-LSTM叠加 起来,合并时间信息,模拟交通状态的演化。在对每一个关键路径建模之后,并行的启动训练过程。在最后的预测任务中,受到集成学习的启发。训练好的模型独立预测,对关键路径的共享路段的结果取均值以获得更好的泛化结果。

2.1 关键路段选择

在城市道路网上,一个路段的交通状态和它的上下游路段有很大的关系,利用其进行预测是很有价值的。例如,一个路段的拥堵可能是由于上游引起的,从上游路段可能会有大量的交通流向下移动。因此,未来的速度可以根据这种时空关系推导出来。此外,通过考虑一系列片段,更多的信息可以被挖掘出来。因此,对于路径而言,本文通过合并这些路段有效的利用这些信息,我们认为,路径使用的越频繁,这条路径的各个路段关系就会越强,但是,一些和目标路段相邻的路段也有着少量的车流量,或者是交通状态模式不规律,所以他们的信息是没有用的。因此,交通数据不是直接考虑路网数据,而是按照路径去组织交通数据。在关键路径里,更精确的时空特征可以被挖掘出来用来速度预测,同时还能保持较强的可解释性。为此,包含主干路和常规交通流的路径被选择,索引r_p被用来方便选择:

                                                                                r_p=\frac{n_p}{|p|}\sum_{s\in p }\frac{n_p}{n_s}

上式中:r_p是路径p重要性和规律性的度量;|p|:路径p上路段的数量;n_p和n_s分别表示历史轨迹集中路径p和路段s的数量;

\frac{1}{|p|}\sum_{s\in p }\frac{n_p}{n_s}越大,则p的路段越不可能出现在其他关键路径上。因此,所选择的路径对其段的排他性更强,也就是说,关键路径的路段们更可能在同一时间出现,因此呈现出很强的相关性。根据定义,关键路径按照r_p的降序来选择,这一过程将持续到所选路径的路段覆盖了整个道路网。

我将采用的做法找到关键路径:

1)首先确定要研究的路网;

2)然后确定时间(15Min),找出一个月的这15min钟里的所有的车辆的轨迹(轨迹(即路径):1-2-3,轨迹:4-7-5,等等),按照上述方法,求得r_p,降序排序,直到所有的轨迹覆盖整个路网为止。

2.2 时空深度学习模型构建

2.2.1 双向长短时记忆网络

LSTM NN(Hochreiter and Schmidhuber, 1997)是一种以长短时记忆单元为隐含层的递归神经网络。如图2所示,两个LSTM NN被用来构造双向长短时记忆网络,使得能够处理正向和反向的序列数据。值得注意的是,LSTM的cell是LSTM的核心,这有助于克服梯度爆炸和梯度消失问题,它的结构如图3所示。

LSTM的cell的方案,它可以用如下方程呈现出来:

f_t=\sigma (W_f[h_{t-1,x_t}]^T+b_f)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值