机器学习笔记之EM算法(三)隐变量与EM算法的本质

本文深入探讨了EM算法在机器学习中的应用,特别是它如何处理隐变量问题。EM算法通过E步和M步迭代优化模型参数,适用于概率生成模型的求解,如高斯判别分析和高斯混合模型。引入隐变量能够简化复杂数据分布的求解,提高模型的拟合效果。
摘要由CSDN通过智能技术生成

引言

上一节介绍了EM算法公式的导出过程,本节将重新回顾EM算法,比对各模型的求解方式,并探究引入隐变量与EM算法的本质。

回顾:EM算法

从性质上介绍EM算法

EM算法本质上是一种算法它的目标是通过求解参数 θ \theta θ,将概率模型 P ( X ∣ θ ) P(\mathcal X \mid \theta) P(Xθ)表示出来
EM算法具有 相似性质 的如:极大似然估计(MLE),最大后验概率估计(MAP):
θ ^ M L E = arg ⁡ max ⁡ θ log ⁡ P ( X ∣ θ ) θ ^ M A P ∝ arg ⁡ max ⁡ θ log ⁡ P ( X ∣ θ ) P ( θ ) \hat \theta_{MLE} = \mathop{\arg\max}\limits_{\theta} \log P(\mathcal X \mid \theta) \\ \hat \theta_{MAP} \propto \mathop{\arg\max}\limits_{\theta} \log P(\mathcal X \mid \theta)P(\theta) θ^MLE=θargmaxlogP(Xθ)θ^MAPθargmaxlogP(Xθ)P(θ)

和上述两种方法不同的是,EM算法并没有求解析解,而是迭代解
与其说是求解,不如说是对求解过程中‘对解进行优化’。相似方法的有‘梯度下降’~
θ ( t + 1 ) = arg ⁡ max ⁡ θ ∫ Z P ( X , Z ∣ θ ) P ( Z ∣ X , θ ( t ) ) d Z \theta^{(t+1)} = \mathop{\arg\max}\limits_{\theta} \int_{\mathcal Z} P(\mathcal X,\mathcal Z \mid \theta)P(\mathcal Z \mid \mathcal X,\theta^{(t)}) d\mathcal Z θ(t+1)=θargmaxZP(X,Zθ)P(ZX,θ(t))dZ
通过EM算法的收敛性证明,可以推导出EM算法在迭代过程中可以对模型参数的解 θ \theta θ进行优化,从而达到一个至少是局部最优的解
log ⁡ P ( X ∣ θ ( t + 1 ) ) ≥ log ⁡ P ( X ∣ θ ( t ) ) \log P(\mathcal X \mid \theta^{(t+1)}) \geq \log P(\mathcal X \mid \theta^{(t)}) logP(Xθ(t+1))logP(Xθ(t))

其他概念回顾

由于EM算法的算法性质,自然和之前介绍的其他概念存在明显区分:

线性回归

例如之前介绍的很多概念如:线性回归,它的模型只是一个线性函数
f ( W , b ) = W T X + b f(\mathcal W,b) = \mathcal W^{T}\mathcal X + b f(W,b)=WTX+b
基于该模型,如何通过求解模型参数 W , b \mathcal W,b W,b来实现回归任务?因此介绍一种求解模型参数 W , b \mathcal W,b W,b工具:最小二乘估计
L ( W , b ) = ∑ i = 1 N ∣ ∣ W T x ( i ) + b − y ( i ) ∣ ∣ ( x ( i ) , y ( i ) ) ∈ D a t a \mathcal L(\mathcal W,b) = \sum_{i=1}^N||\mathcal W^{T}x^{(i)} + b - y^{(i)}|| \quad (x^{(i)},y^{(i)}) \in Data L(W,b)=i=1

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值