机器学习之变分推断(三)基于平均场假设变分推断与广义EM

机器学习笔记之变分推断——基于平均场假设变分推断与广义EM

引言

上一节介绍了基于平均场假设 的变分推断推导过程。本节将介绍平均场假设变分推断与广义EM之间的联系

回顾:基于平均场假设的变分推断

首先,平均场理论(Mean Theory)是一个物理学的概念,将隐变量在概率图中的状态变量 划分成 M \mathcal M M个组,将整个关于 隐变量的概率分布看作 M \mathcal M M个独立的子概率分布。数学符号表示如下:
Q ( Z ) = ∏ i = 1 M Q i ( Z ( i ) ) = Q 1 ( Z ( 1 ) ) ⋅ Q 2 ( Z ( 2 ) ) ⋯ Q M ( Z ( M ) ) \begin{aligned} \mathcal Q(\mathcal Z) & = \prod_{i=1}^{\mathcal M} \mathcal Q_i(\mathcal Z^{(i)}) \\ & = \mathcal Q_1(\mathcal Z^{(1)}) \cdot \mathcal Q_2(\mathcal Z^{(2)}) \cdots \mathcal Q_{\mathcal M}(\mathcal Z^{(\mathcal M)}) \end{aligned} Q(Z)=i=1MQi(Z(i))=Q1(Z(1))Q2(Z(2))QM(Z(M))
由于平均场假设 Q ( Z ) \mathcal Q(\mathcal Z) Q(Z)内部各子概率分布 Q i ( Z ( i ) ) \mathcal Q_{i}(\mathcal Z^{(i)}) Qi(Z(i))之间相互独立,因此,在求解 任一子概率分布 Q j ( Z ( j ) ) ( j ∈ { 1 , 2 , ⋯   , M } ) \mathcal Q_j(\mathcal Z^{(j)})(j \in \{1,2,\cdots,\mathcal M\}) Qj(Z(j))(j{ 1,2,,M}) 过程中,可以通过固定剩余的 M − 1 \mathcal M - 1 M1项进行求解。令:
注意:由于只将 Z ( j ) \mathcal Z^{(j)} Z(j)看作变量,因此该期望基于的分布 ∏ i ≠ j M Q i ( Z ( i ) ) \prod_{i \neq j}^{\mathcal M} \mathcal Q_i(\mathcal Z^{(i)}) i=jMQi(Z(i))是已知分布。同理,隐变量 Z = ( Z ( 1 ) , Z ( 2 ) , ⋯   , Z ( M ) ) \mathcal Z = (\mathcal Z^{(1)},\mathcal Z^{(2)},\cdots,\mathcal Z^{(\mathcal M)}) Z=(Z(1),Z(2),,Z(M))中只有 Z ( j ) \mathcal Z^{(j)} Z(j)是变量,其余均是常数。因此,将该期望视作关于 X , Z ( j ) \mathcal X,\mathcal Z^{(j)} X,Z(j)的函数。
E ∏ i ≠ j M Q i ( Z ( i ) ) [ log ⁡ P ( X , Z ) ] = log ⁡ ϕ ^ ( X , Z ( j ) ) \mathbb E_{\prod_{i \neq j}^{\mathcal M} \mathcal Q_i(\mathcal Z^{(i)})} \left[ \log P(\mathcal X,\mathcal Z)\right] = \log \hat \phi (\mathcal X ,\mathcal Z^{(j)}) Ei=jMQi(Z(i))[logP(X,Z)]=logϕ^(X,Z(j))

从而求解最优 Q j ^ ( Z ( j ) ) \hat {\mathcal Q_j}(\mathcal Z^{(j)}) Qj^(Z(j))的值:
Q j ^ ( Z ( j ) ) = arg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值