机器学习笔记之高斯网络(二)高斯贝叶斯网络

机器学习笔记之高斯网络——高斯贝叶斯网络

引言

上一节介绍了高斯网络及其条件独立性,本节将介绍高斯贝叶斯网络

回顾

高斯网络

高斯网络最核心的特点是:随机变量集合中的随机变量均是连续型随机变量,并且均服从高斯分布
已知某随机变量集合 X \mathcal X X中包含 p p p个特征,整个高斯网络中所有结点的联合概率分布服从多元高斯分布
X = ( x 1 , x 2 , ⋯   , x p ) T P ( X ) = 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 exp ⁡ [ − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] \begin{aligned} \mathcal X & = (x_1,x_2,\cdots,x_p)^T \\ \mathcal P(\mathcal X) & = \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left[-\frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu)\right] \end{aligned} XP(X)=(x1,x2,,xp)T=(2π)2pΣ211exp[21(xμ)TΣ1(xμ)]
其中期望 μ \mu μ协方差矩阵 Σ \Sigma Σ表示如下:
μ = ( μ 1 μ 2 ⋮ μ p ) p × 1 σ = ( σ 11 , σ 12 , ⋯   , σ 1 p σ 21 , σ 22 , ⋯   , σ 2 p ⋮ σ p 1 , σ p 2 , ⋯   , σ p p ) p × p \mu = \begin{pmatrix} \mu_1\\ \mu_2 \\ \vdots \\ \mu_p \end{pmatrix}_{p \times 1} \quad \sigma = \begin{pmatrix} \sigma_{11},\sigma_{12},\cdots,\sigma_{1p} \\ \sigma_{21},\sigma_{22},\cdots,\sigma_{2p} \\ \vdots \\ \sigma_{p1},\sigma_{p2},\cdots,\sigma_{pp} \\ \end{pmatrix}_{p \times p} μ=μ1μ2μpp×1σ=σ11,σ12,,σ1pσ21,σ22,,σ2pσp1,σp2,,σppp×p

  • 随机变量之间的边缘独立性:如果随机变量 x i , x j ( i , j ∈ { 1 , 2 , ⋯   , p } ; i ≠ j ) x_i,x_j (i,j \in \{1,2,\cdots,p\};i\neq j) xi,xj(i,j{ 1,2,,p};i=j)对应协方差矩阵的结果 C o v ( x i , x j ) = σ i j = 0 Cov(x_i,x_j) = \sigma_{ij} = 0 Cov(xi,xj)=σij=0,那么称 x i , x j x_i,x_j xi,xj不相关的。也称 x i , x j x_i,x_j xi,xj边缘独立或者绝对独立
    σ i j = 0 ⇒ x i ⊥ x j \sigma_{ij} = 0 \Rightarrow x_i \perp x_j σij=0xixj
  • 随机变量之间的条件独立性:如果随机变量 x i , x j ( i , j ∈ { 1 , 2 , ⋯   , p } ; i ≠ j ) x_i,x_j(i,j \in \{1,2,\cdots,p\};i \neq j) xi,xj(i,j{ 1,2,,p};i=j)对应精度矩阵(Precision Matrix)结果 λ i j = 0 \lambda_{ij} = 0 λ
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值