机器学习笔记之高斯网络——高斯贝叶斯网络
引言
上一节介绍了高斯网络及其条件独立性,本节将介绍高斯贝叶斯网络。
回顾
高斯网络
高斯网络最核心的特点是:随机变量集合中的随机变量均是连续型随机变量,并且均服从高斯分布:
已知某随机变量集合 X \mathcal X X中包含 p p p个特征,整个高斯网络中所有结点的联合概率分布服从多元高斯分布:
X = ( x 1 , x 2 , ⋯ , x p ) T P ( X ) = 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 exp [ − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] \begin{aligned} \mathcal X & = (x_1,x_2,\cdots,x_p)^T \\ \mathcal P(\mathcal X) & = \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left[-\frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu)\right] \end{aligned} XP(X)=(x1,x2,⋯,xp)T=(2π)2p∣Σ∣211exp[−21(x−μ)TΣ−1(x−μ)]
其中期望 μ \mu μ,协方差矩阵 Σ \Sigma Σ表示如下:
μ = ( μ 1 μ 2 ⋮ μ p ) p × 1 σ = ( σ 11 , σ 12 , ⋯ , σ 1 p σ 21 , σ 22 , ⋯ , σ 2 p ⋮ σ p 1 , σ p 2 , ⋯ , σ p p ) p × p \mu = \begin{pmatrix} \mu_1\\ \mu_2 \\ \vdots \\ \mu_p \end{pmatrix}_{p \times 1} \quad \sigma = \begin{pmatrix} \sigma_{11},\sigma_{12},\cdots,\sigma_{1p} \\ \sigma_{21},\sigma_{22},\cdots,\sigma_{2p} \\ \vdots \\ \sigma_{p1},\sigma_{p2},\cdots,\sigma_{pp} \\ \end{pmatrix}_{p \times p} μ=⎝⎜⎜⎜⎛μ1μ2⋮μp⎠⎟⎟⎟⎞p×1σ=⎝⎜⎜⎜⎛σ11,σ12,⋯,σ1pσ21,σ22,⋯,σ2p⋮σp1,σp2,⋯,σpp⎠⎟⎟⎟⎞p×p
- 随机变量之间的边缘独立性:如果随机变量 x i , x j ( i , j ∈ { 1 , 2 , ⋯ , p } ; i ≠ j ) x_i,x_j (i,j \in \{1,2,\cdots,p\};i\neq j) xi,xj(i,j∈{
1,2,⋯,p};i=j)对应协方差矩阵的结果 C o v ( x i , x j ) = σ i j = 0 Cov(x_i,x_j) = \sigma_{ij} = 0 Cov(xi,xj)=σij=0,那么称 x i , x j x_i,x_j xi,xj是不相关的。也称 x i , x j x_i,x_j xi,xj边缘独立或者绝对独立:
σ i j = 0 ⇒ x i ⊥ x j \sigma_{ij} = 0 \Rightarrow x_i \perp x_j σij=0⇒xi⊥xj - 随机变量之间的条件独立性:如果随机变量 x i , x j ( i , j ∈ { 1 , 2 , ⋯ , p } ; i ≠ j ) x_i,x_j(i,j \in \{1,2,\cdots,p\};i \neq j) xi,xj(i,j∈{ 1,2,⋯,p};i=j)对应精度矩阵(Precision Matrix)结果 λ i j = 0 \lambda_{ij} = 0 λ