机器学习笔记之配分函数(二)——随机最大似然

引言

上一节介绍了对包含配分函数的概率分布——使用极大似然估计求解模型参数的梯度(对数似然梯度),本节将基于上述结论,介绍随机最大似然(Stochastic Maximum Likelihood)。

回顾:对数似然梯度

已知样本集合 X = { x ( i ) } i = 1 N \mathcal X = \{x^{(i)}\}_{i=1}^N X={ x(i)}i=1N,且随机变量 X = { x 1 , ⋯   , x p } \mathcal X = \{x_1,\cdots,x_p\} X={ x1,,xp} p p p维实数域上有意义( X ∈ R p \mathcal X \in \mathbb R^p XRp)。
ML Learning :  \text{ML Learning : } ML Learning : 针对包含配分函数的概率模型 P ( X ; θ ) \mathcal P(\mathcal X;\theta) P(X;θ)中对模型参数 θ \theta θ进行求解。以极大似然估计为例,最优模型参数 θ ^ \hat \theta θ^表示如下:
θ ^ = arg ⁡ max ⁡ θ log ⁡ ∏ i = 1 N P ( x ( i ) ; θ ) = arg ⁡ max ⁡ θ ∑ i = 1 N log ⁡ [ 1 Z ( θ ) P ^ ( x ( i ) ; θ ) ] = arg ⁡ max ⁡ θ ∑ i = 1 N [ log ⁡ P ^ ( x ( i ) ; θ ) − log ⁡ Z ( θ ) ] \begin{aligned} \hat \theta & = \mathop{\arg\max}\limits_{\theta} \log \prod_{i=1}^N \mathcal P(x^{(i)};\theta) \\ & = \mathop{\arg\max}\limits_{\theta} \sum_{i=1}^N \log \left[\frac{1}{\mathcal Z(\theta)} \hat {\mathcal P}(x^{(i)};\theta)\right] \\ & = \mathop{\arg\max}\limits_{\theta} \sum_{i=1}^N \left[\log \hat {\mathcal P}(x^{(i)};\theta) - \log \mathcal Z(\theta)\right] \end{aligned} θ^=θargmaxlogi=1NP(x(i);θ)=θargmaxi=1Nlog[Z(θ)1P^(x(i);θ)]=θargmaxi=1N[logP^(x(i);θ)logZ(θ)]
其中 P ^ ( X ; θ ) \hat {\mathcal P}(\mathcal X;\theta) P^(X;θ)表示不包含配分函数的概率模型结果; Z ( θ ) \mathcal Z(\theta) Z(θ)表示配分函数(Partition Function),假设 X \mathcal X X连续型随机变量,配分函数可表示为:
Z ( θ ) = ∫ X P ^ ( X ; θ ) d X = ∫ x 1 , ⋯   , ∫ x p P ^ ( x 1 , ⋯   , x p ; θ )   d ( x 1 , ⋯   , x p ) \begin{aligned} \mathcal Z(\theta) & = \int_{\mathcal X} \hat {\mathcal P}(\mathcal X;\theta) d\mathcal X \\ & = \int_{x_1},\cdots,\int_{x_p} \hat {\mathcal P}(x_1,\cdots,x_p;\theta) \text{ } d(x_1,\cdots,x_p) \end{aligned} Z(θ)=XP^(X;θ)dX=x1,,xpP^(x1,,xp;θ) d(x1,,xp)
将上式进行整理,可表示为如下表达
{ L ( θ ) = 1 N ∑ i = 1 N log ⁡ P ^ ( x ( i ) ; θ ) − log ⁡ Z ( θ ) θ ^ = arg ⁡ max ⁡ θ L ( θ ) \begin{cases} \mathcal L(\theta) = \frac{1}{N} \sum_{i=1}^N \log \hat {\mathcal P}(x^{(i)};\theta) - \log \mathcal Z(\theta) \\ \quad \\ \hat \theta = \mathop{\arg\max}\limits_{\theta} \mathcal L(\theta) \end{cases} L(θ)=N1i=1NlogP^(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值