机器学习笔记之前馈神经网络(一)基本介绍

本文介绍了从机器学习到深度学习的转变,重点讲解了前馈神经网络的基础,包括线性回归、感知机算法以及正则化和核技巧。此外,还提到了贝叶斯学派的思想,如概率图模型,并概述了深度学习的发展历程,从感知机到深度信念网络,强调了数据量、计算能力和模型效果对深度学习兴起的影响。
摘要由CSDN通过智能技术生成

引言

从本节开始,将介绍前馈神经网络

从机器学习到深度学习

在机器学习笔记开始——机器学习笔记——极大似然估计与最大后验概率估计中,介绍了从频率学派贝叶斯学派

频率学派思想

频率学派逐步发展成统计机器学习(Statistical Machine Learning)。频率学派中最显著的特点是:将概率分布 P ( X ; θ ) \mathcal P(\mathcal X;\theta) P(X;θ)中的模型参数 θ \theta θ看作未知常量,从而通过学习得到近似该常量的结果。例如极大似然估计(Maximum Likelihood Estimation,MLE):
θ M L E = arg ⁡ max ⁡ θ P ( X ; θ ) \theta_{MLE} = \mathop{\arg\max}\limits_{\theta}\mathcal P(\mathcal X;\theta) θMLE=θargmaxP(X;θ)
观察使用频率学派思想设计的模型:

  • 线性回归(Linear Regression),它的模型表示如下:
    这里为方便表达,将偏置项 b b b合并在 W T x \mathcal W^Tx WTx中,后续相关模型同理。
    f ( W ) = W T x f(\mathcal W) = \mathcal W^Tx f(W)=WTx
    其对应策略(损失函数)是最小二乘估计。其主要思想是:对样本集合中所有样本的差距进行求和,当求和结果数值最小时,模型 f ( W ) f(\mathcal W) f(W)对数据集合中样本的拟合效果最优
    这里对于样本的构建依然是 Data :  { ( x ( i ) , y ( i ) ) } i = 1 N \text{Data : } \{(x^{(i)},y^{(i)})\}_{i=1}^N Data : {(x(i),y(i))}i=1N,其中 x ( i ) x^{(i)} x(i)表示样本信息(特征); y ( i ) y^{(i)} y(i)表示样本 x ( i ) x^{(i)} x(i)对应的标签结果。
    L ( W ) = ∑ i = 1 N ∣ ∣ W T x ( i ) − y ( i ) ∣ ∣ 2 \mathcal L(\mathcal W) = \sum_{i=1}^N ||\mathcal W^Tx^{(i)} - y^{(i)}||^2 L(W)=i=1N∣∣WTx(i)y(i)2
  • 线性分类中的感知机算法(Perceptron),它的模型表示如下:
    f ( W ) = Sign  ( W T x ) f(\mathcal W) = \text{Sign }(\mathcal W^Tx) f(W)=Sign (WTx)
    其中 Sign \text{Sign} Sign函数表示符号函数。对应策略错误驱动。其具体思想是:通过修改模型参数,使得被错误分类样本的数量达到最小
    L ( W ) = ∑ x ( i ) , y ( i ) ∈  Data − y ( i ) [ W T x ( i ) ] \mathcal L(\mathcal W) = \sum_{x^{(i)},y^{(i)} \in \text{ Data}} -y^{(i)} \left[\mathcal W^Tx{(i)}\right] L(W)=x(i),y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值