Tensorflow:多层感知机(神经网络)
import tensorflow as tf
print('Tensorflow Version: {}'.format(tf.__version__))
import sys
sys.path.append('D:/Anaconda/Lib/site-packages/')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv('dataset/Advertising.csv')
data.head()
plt.scatter(data.TV,data.sales)
x = data.iloc[:,1:-1]#除去第一列和最后一列
y = data.iloc[:,-1]#最后一列
#直接在顺序模型中写入模型输入层输出层
#Dense中的每一行代表一层,第一行为第一个隐藏层具有10个维度,输入为2个自变量(即3维)
#第二行为第二个隐藏层,由于本模型只有一个隐藏层,因此这里第二个隐藏层为输出层,具有1个维度,输入为10
#输入层到隐藏层的激活函数采用relu,sigmoid,tanh,Leak relu
model = tf.keras.Sequential([tf.keras.layers.Dense(10,input_shape=(3,),activation='relu'),
tf.keras.layers.Dense(1)]
)
model.summary()
model.compile(optimizer='adma',
loss='mse'
)
model.fit(x,y,epochs=100)
test = data.iloc[:10,1:-1]
model.predict(test)
test = data.iloc[:10,-1]
test