2.多层感知机(神经网络)

Tensorflow:多层感知机(神经网络)

import tensorflow as tf

print('Tensorflow Version: {}'.format(tf.__version__))

import sys
sys.path.append('D:/Anaconda/Lib/site-packages/')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data = pd.read_csv('dataset/Advertising.csv')
data.head()

plt.scatter(data.TV,data.sales)

x = data.iloc[:,1:-1]#除去第一列和最后一列
y = data.iloc[:,-1]#最后一列

#直接在顺序模型中写入模型输入层输出层
#Dense中的每一行代表一层,第一行为第一个隐藏层具有10个维度,输入为2个自变量(即3维)
#第二行为第二个隐藏层,由于本模型只有一个隐藏层,因此这里第二个隐藏层为输出层,具有1个维度,输入为10
#输入层到隐藏层的激活函数采用relu,sigmoid,tanh,Leak relu
model = tf.keras.Sequential([tf.keras.layers.Dense(10,input_shape=(3,),activation='relu'),
                            tf.keras.layers.Dense(1)]
)

model.summary()

model.compile(optimizer='adma',
              loss='mse'
)

model.fit(x,y,epochs=100)

test = data.iloc[:10,1:-1]
model.predict(test)

test = data.iloc[:10,-1]
test
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

该用户没有用户名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值