文章目录
前言
最近又开始看深度学习的内容了,好久不用忘得差不多了,先从最简单的感知机入手了,这里记录下用2层感知机实现异或门。
感知机
什么是感知机呢?这里粗浅的介绍下,正式介绍大家可以从网上搜到。
感知机:由多个输入信号,每个输入信号都有对应的权重,经过一个选定的模型产生一个输出,这个模型可以是线性的模型,也可以是非线性的,根据实际需要来定(举例如下图)
上图中,x1,x2为两个输入信号,w1, w2分别为输入信号对应的权重, f为选定的模型,y则为输出,一般还需要一个偏置项b。
2层感知机实现异或门
一般来说,选定线性模型的单层感知机可以实现与门(AND)、或门(OR)、与非门(NAND),但是无法实现异或门,这是因为异或门不是线性可分的(异或门表示如下图)
如