深度学习入门:多层感知机实现异或门

本文介绍了使用2层感知机实现异或门的过程。首先回顾了感知机的基本概念,然后阐述了为何单层感知机无法解决异或门问题,最后展示了如何通过2层感知机的组合成功实现异或门。
摘要由CSDN通过智能技术生成


前言

最近又开始看深度学习的内容了,好久不用忘得差不多了,先从最简单的感知机入手了,这里记录下用2层感知机实现异或门。


感知机

什么是感知机呢?这里粗浅的介绍下,正式介绍大家可以从网上搜到。
感知机:由多个输入信号,每个输入信号都有对应的权重,经过一个选定的模型产生一个输出,这个模型可以是线性的模型,也可以是非线性的,根据实际需要来定(举例如下图)

上图中,x1,x2为两个输入信号,w1, w2分别为输入信号对应的权重, f为选定的模型,y则为输出,一般还需要一个偏置项b。


2层感知机实现异或门

一般来说,选定线性模型的单层感知机可以实现与门(AND)、或门(OR)、与非门(NAND),但是无法实现异或门,这是因为异或门不是线性可分的(异或门表示如下图)
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值