YOLOV3 config理解

本人小白,不足之处望大佬指出
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64                    
subdivisions=16
# 一批训练样本的样本数量,每batch个样本更新一次参数
# batch/subdivisions作为一次性送入训练器的样本数量
# 如果内存不够大,将batch分割为subdivisions个子batch
# 上面这两个参数如果电脑内存小,则把batch改小一点,batch越大,训练效果越好
# subdivisions越大,可以减轻显卡压力


width=608
height=608
channels=3
# 以上三个参数为输入图像的参数信息 width和height影响网络对输入图像的分辨率,
# 从而影响precision,只可以设置成32的倍数


# 动量 DeepLearning1中最优化方法中的动量参数,这个值影响着梯度下降到最优值得速度
momentum=0.9

# 权重衰减正则项,防止过拟合
decay=0.0005

# 通过旋转角度来生成更多训练样本
angle=0

# 通过调整饱和度来生成更多训练样本
saturation = 1.5

# 通过调整曝光量来生成更多训练样本
exposure = 1.5

# 通过调整色调来生成更多训练样本
hue=.1

# 学习率决定着权值更新的速度,设置得太大会使结果超过最优值,太小会使下降速度过慢。
# 如果仅靠人为干预调整参数,需要不断修改学习率。刚开始训练时可以将学习率设置的高一点,
# 而一定轮数之后,将其减小在训练过程中,一般根据训练轮数设置动态变化的学习率。
# 刚开始训练时:学习率以 0.01 ~ 0.001 为宜。一定轮数过后:逐渐减缓。
# 接近训练结束:学习速率的衰减应该在100倍以上。
# 学习率的调整参考https://blog.csdn.net/qq_33485434/article/details/80452941
learning_rate=0.001

# 在迭代次数小于burn_in时,其学习率的更新有一种方式,大于burn_in时,才采用policy的更新方式
burn_in=1000

# 训练达到max_batches后停止学习
max_batches = 500200

# 这个是学习率调整的策略,有policy:constant, steps, exp, poly, step, sig, RANDOM,constant等方式
# 参考https://nanfei.ink/2018/01/23/YOLOv2%E8%B0%83%E5%8F%82%E6%80%BB%E7%BB%93/#more
policy=steps

# 下面这两个参数steps和scale是设置学习率的变化,比如迭代到40000次时,学习率衰减十倍。
# 45000次迭代时,学习率又会在前一个学习率的基础上衰减十倍
steps=400000,450000
# 学习率变化的比例,累计相乘
scales=.1,.1

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky

# Downsample

[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

# Downsample

[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

# Downsample

[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

# Downsample

[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear


[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

# Downsample

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[shortcut]
from=-3
activation=linear

######################

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear


[yolo]
mask = 6,7,8
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1


[route]
layers = -4

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = -1, 61



[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear


[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1



[route]
layers = -4

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = -1, 36



[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky

[convolutional]
size=1
stride=1
pad=1

# 每一个[region/yolo]层前的最后一个卷积层中的 filters=num(yolo层个数)*(classes+5) 
# 5的意义是5个坐标,论文中的tx,ty,tw,th,to
filters=255
activation=linear


# 在yoloV2中yolo层叫region层
[yolo]
mask = 0,1,2

# anchors是可以事先通过cmd指令计算出来的,是和图片数量,width,height以及cluster(应该就是下面的num的值,
# 即想要使用的anchors的数量)相关的预选框,可以手工挑选,也可以通过k means 从训练样本中学出
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=80

# 每个grid cell预测几个box,和anchors的数量一致。当想要使用更多anchors时需要调大num,
# 且如果调大num后训练时Obj趋近0的话可以尝试调大object_scale
num=9

# 利用数据抖动产生更多数据,YOLOv2中使用的是crop,filp,以及net层的angle,flip是随机的,
# jitter就是crop的参数,tiny-yolo-voc.cfg中jitter=.3,就是在0~0.3中进行crop
jitter=.3
# 参与计算的IOU阈值大小.当预测的检测框与ground true的IOU大于ignore_thresh的时候,参与loss的计算,否则,检测框的不参与损失计算。
# 参数目的和理解:目的是控制参与loss计算的检测框的规模,当ignore_thresh过于大,接近于1的时候,那么参与检测框回归loss的个数就会
# 比较少,同时也容易造成过拟合;而如果ignore_thresh设置的过于小,那么参与计算的会数量规模就会很大。同时也容易在进行检测框回归的时候造成欠拟合。
# 参数设置:一般选取0.5-0.7之间的一个值,之前的计算基础都是小尺度(13*13)用的是0.7,(26*26)用的是0.5。这次先将0.5更改为0.7。
# 参考:https://www.e-learn.cn/content/qita/804953
ignore_thresh = .7
truth_thresh = 1

# 为1打开随机多尺度训练,为0则关闭
random=1

 参考:https://blog.csdn.net/phinoo/article/details/83022101

©️2020 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值