Deep Retinex Decomposition for Low-Light Enhancement学习笔记
Retinex模型本身是用在图像增强上面的,不是用在低光图像处理上的,但是却这样用了,而且效果也比较不错,所以以后只要是和图像增强方面的网络模型的论文我都可以看,关于图像增强的网络模型都可以借鉴着使用。
2.
Retinex模型是微光图像增强的有效工具。它假设观测到的图像可以分解为反射和照明。
3.
Retinex深度网络,该网络集成了图像分解和后续增强操作。首先,使用Decom子网将观测图像分割为与光照无关的反射和结构感知的平滑照明。
4.
Retinex Net的拟议框架。
增强过程分为三个步骤:分解、调整和重建。在分解步骤中,子网装饰网将输入图像分解为反射和照明。在下面的调整步骤中,基于Enhance Net的编码器-解码器会点亮照明。引入多尺度拼接,从多尺度角度调整光照。在这一步中,反射率上的噪声也会被去除。最后,我们重建调整后的光照和反射率,以获得增强的结果。
5.
经典的Retinex理论模拟了人类的颜色感知。它假设观测到的图像可以分解为两个组件,反射和照明。
6.
反射率描述了捕获对象的固有特性,在任何亮度条件下都被认为是一致的。照明表示对象上的各种亮度。反射率是物体的固有属性不会受光照亮度的影响,而这儿解释亮度表示对象上的各种亮度,但是对于一张图片不同物体的接受到的亮度是一样的,但是由于物体颜色会吸收光,那么影响不同物体显示不同颜色的原因就是不同物体吸收的光不一样,那么我们是不是可以去研究一下,不同颜色像素的组合对于rgb三色光的吸收率是多少,计算出不同rgb数值对于不同光的吸收率那么不得可以得出每一部分的的图片应该显示的rgb数值了吗。
7.
它在训练阶段成对接收低光/正常光图像,而在训练阶段仅接收低光图像作为输入
重建阶段,通过元素相乘将调整后的光照和反射率结合起来。(怎么个相乘法)
9.