推导前提:
- 坐标使用右手坐标系,角度逆时针旋转为正。

- 绕X轴旋转角度为 俯仰角 即Pitch
- 绕Y轴旋转角度为 偏航角 即Yaw(Head)
- 绕Z轴旋转角度为 翻滚角 即Roll
一、平面二维坐标点的旋转
如右图所示,根据三角函数关系,可以列出向量OP与OP'的坐标表示形式:
x = |OP|•cosα x′ = |OP|•cos(α+β)
y = |OP|•sinα y′ = |OP|•sin(α+β)
将P′(x′,y′)表达式展开:
x′ = |OP|•cos(α+β) = |OP|•(cosα•cosβ - sinα•sinβ) = x•cosβ - y•sinβ
y′ = |OP|•sin(α+β) = |OP|•(sinα•cosβ + cosα•sinβ) = x•sinβ + y•cosβ
为方便运算理解,我们将二维点旋转表示为矩阵:

以上便是二维坐标点的旋转矩阵,接下来我们来推导三维坐标点的旋转矩阵
二、立体三维坐标点的旋转
1、绕Z轴旋转
参考二维点旋转矩阵同样的推导流程,我们可以推导出来三维点绕Z轴旋转的坐标表达式:
x′ = |OP|•cos(α+β) = |OP|•(cosα•cosβ - sinα•sinβ) = x•cosβ - y•sinβ
y′ = |OP|•sin(α+β) = |OP|•(sinα•cosβ + cosα•sinβ) = x•sinβ + y•cosβ
z′ = z
为方便运算理解,我们将三维点旋转表示为矩阵:

2、绕Y轴旋转

3、绕X轴旋转


4、绕三轴旋转(先绕x,再绕y,最后绕z轴旋转。)
三轴全旋转矩阵 :

整理计算后表达式为:

注:绕轴旋转的顺序不一样,得到的旋转矩阵也不一样!
综上所推导,得到三维旋转点的对应关系:


本文详细介绍了三维坐标点在右手坐标系中的旋转矩阵推导,包括绕Z轴、Y轴和X轴的旋转,以及三轴组合旋转的矩阵表示。通过这些矩阵,可以方便地理解和计算三维空间中点的旋转操作。强调了旋转顺序对最终结果的影响,并提供了旋转矩阵的PDF文档下载链接。
4668

被折叠的 条评论
为什么被折叠?



