Batch Size设置过大时,对神经网络性能的影响情况

大型批量大小在神经网络训练中可能导致更好的收敛性,但并不保证良好的泛化能力。论文指出,大型批量训练倾向于形成导致泛化能力下降的尖锐极小值,而小型批量训练则更可能达到平坦极小值,提高泛化性能。数据增强和保守训练等方法并未有效解决这一问题,动态抽样成为一种可能的补救策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前的一片博文写了Batch Size的作用和应该如何设置比较合适,同时还有Batch Size大小,与学习率 lr

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值