项目内容
要求给出道路上每一个车辆的静止或者运动状态。在不能停车的地段,比如十字路口,得到静止车辆停止的时间,并且判断是否有交通事故发生。
项目方案
- 使用目标检测网络检测车辆的位置
- 使用FlowNet检测光流。
- 如果车辆位置上,在光流图上存在光流,则车辆运动。将静止的车辆加入集合
- 在集合中配对,即寻找静止车辆距离小于某阈值的其他静止车辆组成pair。
- 统计当前帧中出现的pair是否在上一帧中出现过,如果出现过,则对应的pair对应的计数加1。
- pair的计数大于阈值,则说明两辆静止车辆在不能停车的路段,车距相近,且静止时间过长,可能发生事故。
项目工作
- 在python上进行算法搭建,验证算法可行性
- 使用libtorch C++ API,将torchScirpt模型部署到VS项目中。
项目demo
每一帧的车辆位置,由目标检测网络提供。视频内容由甲方提供(海康的接口)。
每一帧的光流,由flowNet提供,根据光流得到车辆是否静止还是运动。就是上图bounding box的标签(static or running)
蓝色线相连接,指静止车辆pair(两个距离小于某阈值且最近的静止车辆组成)。青色圈代表这个pair持续的时间已经超过了某个阈值,发出示警。