Instant Neural Graphics Primitives with a Multiresolution Hash Encoding以及源码浅析

背景

现存的一些新视图合成的训练过程和渲染速度都比较慢,其原因是因为query point需要使用MLP编码,而且在一个采样空间中,存在很多无效的query point也要计算其density和color,从而出现很多冗余计算。

作者针对这个问题,提出了基于哈希的特征提取方式,通过反向求导更新哈希表中的特征向量。

作者陈述了非哈希式的优化方法的弊端,即便像八叉树等方法可以将训练缩短至几分钟,但仍有多余计算,可以进一步精简。
在这里插入图片描述

方法

作者提出了多分辨率哈希索引,每个分辨率有独立的哈希表,将索引出来的特征全部concat之后送入MLP,得到的重建效果和之前的方法无异,而且训练速度和渲染速度更快。将参数量最多降低至20倍。
在这里插入图片描述

该方法其实很简单。Nerf是将世界坐标和视线方向通过MLP编码得到特征,然后使用两个独立的MLP将特征映射为密度和颜色;hash encoding则直接根据世界坐标x去索引方格8个角落的特征,然后三线性插值得到x的特征。所谓的哈希表其实就是类似于nn.Embedding的东西,可以通过整数进行索引一个指定维度的特征。
在这里插入图片描述比较复杂的可能就是这是个多分辨率表结构,每个多分辨率都有独立的哈希表。分辨率的大小从一个coarse level到fine level,用一个b 作为scale。然后将多分辨率表中检索到特征concat到一起,得到所谓的哈希编码特征。
该特征可以用很多应用,比如论文列举了4个应用

  • Gigapixel Image Approximation
  • Signed Distance Functions
  • Neural Radiance Caching
  • Neural Radiance and Density Fields (NeRF)

源码浅析

论文地址
官方代码
hashNerf
torch-NGP

hash表的建立

self.embeddings = nn.ModuleList([nn.Embedding(2**self.log2_hashmap_size, \
                                        self.n_features_per_level) for i in range(n_levels)])

三线性插值

def trilinear_interp(self, x, voxel_min_vertex, voxel_max_vertex, voxel_embedds):
        '''
        x: B x 3
        voxel_min_vertex: B x 3
        voxel_max_vertex: B x 3
        voxel_embedds: B x 8 x 2
        '''
        # source: https://en.wikipedia.org/wiki/Trilinear_interpolation
        weights = (x - voxel_min_vertex)/(voxel_max_vertex-voxel_min_vertex) # B x 3

        # step 1
        # 0->000, 1->001, 2->010, 3->011, 4->100, 5->101, 6->110, 7->111
        c00 = voxel_embedds[:,0]*(1-weights[:,0][:,None]) + voxel_embedds[:,4]*weights[:,0][:,None]
        c01 = voxel_embedds[:,1]*(1-weights[:,0][:,None]) + voxel_embedds[:,5]*weights[:,0][:,None]
        c10 = voxel_embedds[:,2]*(1-weights[:,0][:,None]) + voxel_embedds[:,6]*weights[:,0][:,None]
        c11 = voxel_embedds[:,3]*(1-weights[:,0][:,None]) + voxel_embedds[:,7]*weights[:,0][:,None]

        # step 2
        c0 = c00*(1-weights[:,1][:,None]) + c10*weights[:,1][:,None]
        c1 = c01*(1-weights[:,1][:,None]) + c11*weights[:,1][:,None]

        # step 3
        c = c0*(1-weights[:,2][:,None]) + c1*weights[:,2][:,None]

        return c
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值