Holistically-nested Edge Detection (以下简称HED)
HED通过深度学习网络实现边缘检测,网络主要有以下两个特点
Holistically:指端到端(end-to-end 或者image-to-image)的学习方式,也就是说,网络的输入为原图,输出为边缘检测得到的二值化图像。
Nested:意思是嵌套的。在论文中指,在每层卷积层后输出该层的结果(responses produced at hidden layers ),这个结果在论文中称为side outputs。不同隐藏层的Side output尺度不同,而且,HED不止要求最后输出的边缘图像好,也要求各side output的结果要好,即学习对象是最终的输出和各Side outputs(参考后面损失函数部分)。因此,论文中称HED学习网络是multi-scale and multi-level。可参考HED的网络结构理解,如下图。
- 网络结构:
图1 HED网络结构 图2 网络结构简单图示(方框是Input Data,论文写错了)
如上面图中所示,HED是在VGG网络基础上改造的,卷积层后添加side output。网络层次越深,卷积核越大,side o