SE-Net---在通道上分配attention的模块(论文阅读)

SE-Net是一种通过通道注意力机制增强卷积特征的模块,适用于各种网络结构,如AlexNet、ResNet和InceptionNet。通过全局平均池化和瓶颈结构计算通道权重,有效提升性能。实验表明,SE-ResNet-50在ImageNet上的性能几乎与ResNet-101相当,但参数量仅为一半。超参数r的选择对性能和过拟合有影响,低层特征的注意力分布普遍,而高层特征更具有针对性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Squeeze excitation network 以下简称SE-Net

SE是一个在卷积特征图通道上分配Attention的模块,可嵌入到其他的的网络结构中。

SE模块图示:

下面说明如何计算attention,即分配给各通道权重值的计算方式。

Ftr:常规卷积操作

Fsq:squeeze操作,使用H x W大小的卷积核进行average pooling(也叫global average pooling),生成1 x 1 x C的向量

Fex:excitation操作。 公式表示的是两个FC构成的bottleneck结构,防止过拟合,提高泛化能力。如下图,detla表示relu函数,sigma是sigmoid。

补充说明:论文中z和s的维度是一样的。Bottleneck先降维再升维,假设降维的比例系数r,实验结果精度也与r的大小有关。相关内容在文末说明。

Fscale:下标c可理解为channel-wise,每张通道的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值