联系作者:微信:1075933062
需求:先提供数据库,数据库中存放多张车辆的照片,并且每个车辆的照片标出对应对的距离,然后根据车牌的尺寸实现车牌尺寸与距离之间的拟合
难点分析:
如何实现每个车牌的位置?主要是因为车子的距离有远有近,所以需要算法具有足够的鲁棒性
下面是两个极端的车牌图像:
近距离的车牌:
远距离的车牌:
对于这种办法没有太好兼容的方法,只能选择人为缩小ROI,或者自动降低ROI,下面选择基于外部干涉的训练方法,即,处理数据时每个图片,人为进行相对应的裁剪。
然后对数据识别后,在一个文件中记录下列数据
然后对产生的数据进行相关拟合,当然这里的拟合可以使用 matlab 进行相关的拟合也可以使用 神经网络进行学习
下面以多项式拟合为例:
将数据导出来然后作图会发现成一个对应的关系:
可以看见车牌的宽度&高度和距离之间存在一个相对应的关系,到这里基本已经结束了
就可以通过他们之间的关系进行神经网络的训练
然后生成一个神经网络出来
但是其实想说另外一种方法,就是w 和距离L之间一定存在着某种关系
而且h和L之间也存在着一种关系,这种关系从图上来看不是线性的关系,所以说他是非线性的关系
那其实可以使用多项式拟合的方法,将w 和L的关系找到,然后同过w 来预测距离
其实这里面w比较更准确一些,因为拍照高度不同或车牌的高度不同就会导致h相差比较大,误差也会比较大。
由于数据不好导致拟合效果不好
所以后面需要调整数据