通过定义计算单天线单用户离散输入信号等概情况下的信道容量

任意输入分布

考虑如下简单的加性高斯信道:
在这里插入图片描述
其中,X为离散输入符号集 X = [ a 0 , a 1 , ⋯   , a M − 1 ] X = \left[ {{a_0},{a_1}, \cdots ,{a_{M - 1}}} \right] X=[a0,a1,,aM1],由上图, Y = X + n Y = X + n Y=X+n
根据信道容量的定义:

C = max ⁡ { p ( x = a i ) , i = 1 , 2 , . . . , M − 1 } { I ( X ; Y ) } C = \mathop {\max }\limits_{\left\{ {p\left( {x = {a_i}} \right),i = 1,2,...,M - 1} \right\}} \left\{ {I\left( {X;Y} \right)} \right\} C={p(x=ai),i=1,2,...,M1}max{I(X;Y)}
可见,我们的目的是找到一个任意可能的输入信号的概率分布,使得最大化的互信息达到信道容量。如下图计算过程:
在这里插入图片描述
其中,(1a)到(1c)是信息论课本中的相关定义,具体可百度;(1c)上半部分到(1d)是全概率公式的展开。

等概

假设输入符号是在M上是均匀分布的,
所以有:
C = 1 M ∑ k = 0 M − 1 ∫ y p ( y ∣ a k ) log ⁡ 2 ( p ( y ∣ a k ) 1 M ∑ i = 0 M − 1 p ( y ∣ a i ) ) d y ( 2 ) C = \frac{1}{M}\sum\limits_{k = 0}^{M - 1} {\int_y {p\left( {y|{a_k}} \right)} {{\log }_2}\left( {\frac{{p\left( {y|{a_k}} \right)}}{{\frac{1}{M}\sum\limits_{i = 0}^{M - 1} {p\left( {y|{a_i}} \right)} }}} \right)dy{\rm{ }}} (2) C=M1k=0M1yp(yak)log2M1i=0M1p(yai)p(yak)dy2
再用log(ab)=log(a)+log(b)与log(a/b) = -log(b/a)的性质,把上式分母中的1/M提出来,并将分数项倒过来,有:
C = 1 M log ⁡ 2 M ∑ k = 0 M − 1 ∫ y p ( y ∣ a k ) d y − 1 M ∑ k = 0 M − 1 ∫ y p ( y ∣ a k ) log ⁡ 2 ( ∑ i = 0 M − 1 p ( y ∣ a i ) p ( y ∣ a k ) ) d y ( 3 ) C = \frac{1}{M}{\log _2}M\sum\limits_{k = 0}^{M - 1} {\int_y {p\left( {y|{a_k}} \right)} } dy - \frac{1}{M}\sum\limits_{k = 0}^{M - 1} {\int_y {p\left( {y|{a_k}} \right)} } {\log _2}\left( {\frac{{\sum\limits_{i = 0}^{M - 1} {p\left( {y|{a_i}} \right)} }}{{p\left( {y|{a_k}} \right)}}} \right)dy{\rm{ }}(3) C=M1log2Mk=0M1yp(yak)dyM1k=0M1yp(yak)log2p(yak)i=0M1p(yai)dy3
又因为,对该项 ∫ y p ( y ∣ a k ) d y \int\limits_y {p\left( {y|{a_k}} \right)} dy yp(yak)dy,其积分结果为1,这是因为归一性,即,y的所有概率和为1。所以有:
C = log ⁡ 2 M − 1 M ∑ k = 0 M − 1 ∫ y p ( y ∣ a k ) log ⁡ 2 ( ∑ i = 0 M − 1 p ( y ∣ a i ) p ( y ∣ a k ) ) d y ( 4 ) C = {\log _2}M - \frac{1}{M}\sum\limits_{k = 0}^{M - 1} {\int_y {p\left( {y|{a_k}} \right)} } {\log _2}\left( {\frac{{\sum\limits_{i = 0}^{M - 1} {p\left( {y|{a_i}} \right)} }}{{p\left( {y|{a_k}} \right)}}} \right)dy{\rm{ }} (4) C=log2MM1k=0M1yp(yak)log2p(yak)i=0M1p(yai)dy4

因为噪声是服从均值为0,方差为 σ 2 {\sigma ^2} σ2的高斯分布。对于p(y|ak)
有:
p ( y ∣ a k ) = exp ⁡ ( − ∣ y − a k ∣ 2 2 σ 2 ) ( 5 ) p\left( {y|{a_k}} \right) = \exp \left( { - \frac{{{{\left| {y - {a_k}} \right|}^2}}}{{2{\sigma ^2}}}} \right) (5) p(yak)=exp(2σ2yak2)5

将(5)带入(4)中,有:
C = log ⁡ 2 M − 1 M ∑ k = 0 M − 1 ∫ y p ( y ∣ a k ) log ⁡ 2 ∑ i = 1 M − 1 exp ⁡ ( − ∣ y − a i ∣ 2 − ∣ y − a k ∣ 2 2 σ 2 ) d y ( 6 ) C = {\log _2}M - \frac{1}{M}\sum\limits_{k = 0}^{M - 1} {\int_y {p\left( {y|{a_k}} \right)} } {\log _2}\sum\limits_{i = 1}^{M - 1} {\exp \left( { - \frac{{{{\left| {y - {a_i}} \right|}^2} - {{\left| {y - {a_k}} \right|}^2}}}{{2{\sigma ^2}}}} \right)dy} (6) C=log2MM1k=0M1yp(yak)log2i=1M1exp(2σ2yai2yak2)dy6
接着,令n=y-x,则dy=dz,y与z同号,故可进行积分代换,因为:
在这里插入图片描述
故可以得到以下计算过程:
在这里插入图片描述
其中,(6)到(7)是把y=x+n待入公式中,(7)到(8)是把积分写成数学期望的形式。(8)式的表达形式常可以在一些论文中见到。

总结

  1. 附:以上计算结果为单用户单天线的高斯信道,信道矩阵归一化为1了。可以参考经典论文,讨论的是单用户mimo高斯信道:

Globally Optimal Linear Precoders for Finite Alphabet Signals Over
Complex Vector Gaussian Channels

2.可以想象,如果是干扰信道的话,公式6中的y-ak不会再单纯的等于噪声n了,会引入干扰项

在这里插入图片描述
  具体是什么样的,后面我会再更新博客,也可以去搜一下关于广播和干扰信道的论文,其实就是广义二次矩阵相减的形式.
  此外,在广播或者干扰信道的条件下,条件概率也不再单纯等于噪声,需要经过一点点小计算,最终的结果也会是用噪声来进行积分代换的。
  敲公式不易,觉得有帮助的话麻烦点个赞把!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信仿真爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值