报错如下:
Traceback (most recent call last):
File "train.py", line 116, in <module>
trainer.train()
File "/home/xinying/CDCN-Face-Anti-Spoofing.pytorch/trainer/FASTrainer.py", line 171, in train
scaler.scale(loss).backward()
File "/opt/conda/lib/python3.7/site-packages/torch/tensor.py", line 185, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py", line 127, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: Found dtype Double but expected Float
可以看到这是一个跟数据类型相关的错误;
解决方案
其实这个问题产生的原因就是数据类型不一致,比较solid一点的方法,就是从报错的地方开始一点一点调试代码,看看参与运算的张量是否存在类型不同的情况,例如:
如果a[FloatTensor]和b[DoubleTensor]是两个参与运算的张量,且有运算代码“loss = criterion(a,b)”,则会引发上面的问题。
所以可以从出错的代码位置一步步进行调试;
其实,最主要的原因还是张量类型不一致,所以实际上将张量类型统一就可以了,
可以使用代码:
torch_tensor = torch_tensor.float()
loss_15 = self.criterion(net_depth_map_15, depth_map_15.float())
loss_8 = self.criterion(net_depth_map_8, depth_map_8.float())
loss_5 = self.criterion(net_depth_map_5, depth_map_5.float())
3.1 小提示——使用double()则会占用很多显存
南溪自己试过用double()进行运算,不过这样显存占用会增大许多,而很可能出现显存爆炸的情况,所以最后还是使用FloatTensor类型;