深度理解log-sum-exp

本文介绍了在损失函数BCEWithLogitsLoss中所使用的log-sum-exp技巧,并解释了它如何提高数值稳定性。通过整合sigmoid和BCELoss操作,该技巧能够有效地避免在计算过程中出现数值溢出的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

啥是log-sum-exp呢,

在损失函数BCEWithLogitsLoss中,Torch官方文档给出的解释是,就是在sigmoid后接了BCELoss。通过将这些操作整合到一层,使用log-sum-exp strick的技巧可以获得更好的数值稳定性。等等,什么是log-sum-exp trick?

查了一下,发现知乎上有篇文章写的很详细,传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我现在强的可怕~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值