torch.clamp_min_方法

该博客介绍了在PyTorch中如何使用`clamp_min_`函数来设定张量元素的最小值。示例展示了当张量元素小于指定的最小值(本例中为1000)时,将其替换为该最小值的操作。此外,还展示了在损失函数(loss)中应用`clamp_min_`防止数值过小导致的问题,通过设置损失函数的下限并对其取对数后再求平均值,确保了数值稳定性和计算的有效性。
摘要由CSDN通过智能技术生成

torch.clamp_min_方法设置一个下限min,tensor中有元素小于这个值, 就把对应的值赋为min

>>> zz1
tensor([ 130,  144,  183,  609,  818,  832,  891, 1386, 1494, 1729, 1739, 1785,
        2671, 2802, 3444, 4711, 4754, 4763, 5728, 5842])
>>> zz2 = zz1.clamp_min_(1000)
>>> zz2
tensor([1000, 1000, 1000, 1000, 1000, 1000, 1000, 1386, 1494, 1729, 1739, 1785,
        2671, 2802, 3444, 4711, 4754, 4763, 5728, 5842])
loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我现在强的可怕~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值