【深度学习HED边缘检测网络】

本文介绍了HED(Holistically-Nested Edge Detection)边缘检测网络的原理,包括网络结构、数据集、模型实现和OpenVINO的部署测试。HED网络基于VGG16,通过提取不同层的特征并进行融合,用于边缘检测。文章提供了源码链接、数据集获取方式以及模型训练和测试的相关资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码:

这个版本的代码是最简洁易懂的,GitHub - senliuy/Keras_HED_with_model: Keras implementation of Holistically-nested edge detection

数据集:

链接:https://pan.baidu.com/s/13qStI9DP1mbt9JallQFpPg 
提取码:wbfi

HED(Holistically-Nested Edge Detection) 网络

首先先看一下HED网络结构:搬运边缘检测︱基于 HED网络TensorFlow 和 OpenCV 实现图片边缘检测_深度学习边缘检测-CSDN博客

HED 网络模型是在 VGG16 网络结构的基础上设计出来的,所以有必要先看看 VGG16。 
这里写图片描述
 

HED 网络在 VGG 网络的基础上去除了后5层,vgg的后面的全连接层与 softmax 层主要用于分类,HED 网络只需要提取图片的特征,保留了前面的卷积层和池化层(注意:去掉最后一层池化层)。并将特征图合并然后1*1卷积,最后采用sigmoid激活,下面是 HED 网络的示意图:

特征图去除深度:

      分别提取出 VGG 网络的 conv1_2, conv2_2, conv3_3, conv4_3, conv5_3 层,这些输出层的大小分别为 [224, 224, 64],[112, 112, 128],[56, 56, 256],[28, 28, 512],[14, 14, 512],由于需要将这些层的数据和成一张图片,首先需要将深度降维到1,然后再按比例放大 1,2,4,8,16 倍使得每一层的数据大

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值