源码:
这个版本的代码是最简洁易懂的,GitHub - senliuy/Keras_HED_with_model: Keras implementation of Holistically-nested edge detection
数据集:
链接:https://pan.baidu.com/s/13qStI9DP1mbt9JallQFpPg
提取码:wbfi
HED(Holistically-Nested Edge Detection) 网络
首先先看一下HED网络结构:搬运边缘检测︱基于 HED网络TensorFlow 和 OpenCV 实现图片边缘检测_深度学习边缘检测-CSDN博客
HED 网络模型是在 VGG16 网络结构的基础上设计出来的,所以有必要先看看 VGG16。
HED 网络在 VGG 网络的基础上去除了后5层,vgg的后面的全连接层与 softmax 层主要用于分类,HED 网络只需要提取图片的特征,保留了前面的卷积层和池化层(注意:去掉最后一层池化层)。并将特征图合并然后1*1卷积,最后采用sigmoid激活,下面是 HED 网络的示意图:
特征图去除深度:
分别提取出 VGG 网络的 conv1_2, conv2_2, conv3_3, conv4_3, conv5_3 层,这些输出层的大小分别为 [224, 224, 64],[112, 112, 128],[56, 56, 256],[28, 28, 512],[14, 14, 512],由于需要将这些层的数据和成一张图片,首先需要将深度降维到1,然后再按比例放大 1,2,4,8,16 倍使得每一层的数据大