快速sigmoid算法

  • 使用C内置函数exp()来计算f(x)的值是慢的,sigmoid在CPU中计算耗时比较大,可以参考fast-sigmoid-algorithm。 CPU上性能对比结果100000 times sigmoid ==> 2.81878ms fast sigmoid ==> 0.589737ms,而GPU上两者差异忽略不记。
    fast_sigmoid(x) = (x / (1 + |x|)) * 0.5 + 0.5

如果f(x)的参数不接近于零,则对于exp(x)使用序列扩展的第一个术语将不会太大,如果参数为“(”),则与Sigmoid函数的一系列扩展具有相同的问题,大”.

另一种方法是使用表查找.也就是说,您可以预先计算给定数量的数据点的Sigmoid函数的值,然后根据需要对它们进行快速(线性)插值.

参考:

https://github.com/Syencil/tensorRT

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值