libtorch waternet水下图像增强模型和基准数据集

文章介绍了水下图像增强的重要性和现有算法的局限性,提出了一个包含950张真实水下图像的UIEB基准数据集,用于评估和训练模型。Water-Net是基于此数据集训练的网络,展示了CNN在水下图像增强的潜力。作者还分享了数据集和libtorch模型代码供研究使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        水下图像增强由于其在海洋工程和水上机器人领域的重要性而备受关注。在过去的几年里,人们提出了许多水下图像增强算法。然而,这些算法主要使用合成数据集或少数选定的真实世界图像进行评估。因此,目前还不清楚这些算法如何处理在野外获取的图像,以及我们如何衡量该领域的进展。为了弥补这一差距,我们首次使用大规模真实世界图像对水下图像增强进行全面的感知研究和分析。

        在本文中,我们构建了一个水下图像增强基准(UIEB),包括 950 张真实水下图像,其中 890 张具有相应的参考图像。我们将其余60幅无法获得满意参考图像的水下图像视为具有挑战性的数据。使用该数据集,我们对最先进的水下图像增强算法进行定性和定量的全面研究。此外,我们提出了一个在此基准上训练的水下图像增强网络(称为 Water-Net)作为基线,这表明了所提出的 UIEB 用于训练卷积神经网络(CNN)的泛化。基准评估和提出的 Water-Net 展示了最先进算法的性能和局限性&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值