### SCTransNeT源码实现
SCTransNeT是一种用于时空数据处理的神经网络架构,其核心在于融合时间序列特征与空间位置信息。以下是简化版的SCTransNeT模型实现[^1]:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class SpatialTemporalBlock(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(SpatialTemporalBlock, self).__init__()
self.spatial_conv = nn.Conv2d(input_dim, hidden_dim, kernel_size=3, padding=1)
self.temporal_transformer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=8)
def forward(self, x):
spatial_features = self.spatial_conv(x)
temporal_output = self.temporal_transformer(spatial_features.permute(0, 2, 3, 1))
return temporal_output.permute(0, 3, 1, 2)
class SCTransNet(nn.Module):
def __init__(self, num_classes, input_channels):
super(SCTransNet, self).__init__()
self.st_block_1 = SpatialTemporalBlock(input_channels, 64)
self.st_block_2 = SpatialTemporalBlock(64, 128)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
out = self.st_block_1(x)
out = self.st_block_2(out)
out = self.global_avg_pool(out).squeeze(-1).squeeze(-1)
logits = self.fc(out)
return logits
if __name__ == "__main__":
model = SCTransNet(num_classes=10, input_channels=3)
dummy_input = torch.randn(8, 3, 64, 64) # batch size of 8 with images of shape (3, 64, 64)
output = model(dummy_input)
print(output.shape) # Expected to be [batch_size, num_classes], i.e., [8, 10]
```
此代码展示了如何构建一个基础版本的空间-时间转换器网络(SCTransNeT),其中包含了两个主要组件:`SpatialTemporalBlock` 和 `SCTransNet` 类。前者负责提取局部区域内的时空关联特性;后者则作为整体框架来组织这些模块并完成最终分类任务。