SCTransNet验证测试

### SCTransNeT源码实现 SCTransNeT是一种用于时空数据处理的神经网络架构,其核心在于融合时间序列特征与空间位置信息。以下是简化版的SCTransNeT模型实现[^1]: ```python import torch import torch.nn as nn import torch.optim as optim class SpatialTemporalBlock(nn.Module): def __init__(self, input_dim, hidden_dim): super(SpatialTemporalBlock, self).__init__() self.spatial_conv = nn.Conv2d(input_dim, hidden_dim, kernel_size=3, padding=1) self.temporal_transformer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=8) def forward(self, x): spatial_features = self.spatial_conv(x) temporal_output = self.temporal_transformer(spatial_features.permute(0, 2, 3, 1)) return temporal_output.permute(0, 3, 1, 2) class SCTransNet(nn.Module): def __init__(self, num_classes, input_channels): super(SCTransNet, self).__init__() self.st_block_1 = SpatialTemporalBlock(input_channels, 64) self.st_block_2 = SpatialTemporalBlock(64, 128) self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, num_classes) def forward(self, x): out = self.st_block_1(x) out = self.st_block_2(out) out = self.global_avg_pool(out).squeeze(-1).squeeze(-1) logits = self.fc(out) return logits if __name__ == "__main__": model = SCTransNet(num_classes=10, input_channels=3) dummy_input = torch.randn(8, 3, 64, 64) # batch size of 8 with images of shape (3, 64, 64) output = model(dummy_input) print(output.shape) # Expected to be [batch_size, num_classes], i.e., [8, 10] ``` 此代码展示了如何构建一个基础版本的空间-时间转换器网络(SCTransNeT),其中包含了两个主要组件:`SpatialTemporalBlock` 和 `SCTransNet` 类。前者负责提取局部区域内的时空关联特性;后者则作为整体框架来组织这些模块并完成最终分类任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值