pandas读取没有标题栏(column name)的csv文件的方法

Just as following shows, setting header to None , names to real column name.

如下所示,关键是header=None,names=rankings_colname

rankings_colname=['date','rank','player_id','score','remarks'];
rankings = pd.read_csv('D:\\reactProJ\\tennis_wta\\wta_rankings_00s.csv',header=None,names=rankings_colname )

 

在Jupyter Notebook中编写代码来完成实验设计和程序运行的过程通常包括以下几个步骤: 1. **环境准备**: 首先,确保已经安装了Python、Jupyter Notebook以及必要的数据处理库如pandas和matplotlib。如果还没有安装,可以使用pip进行安装: ``` !pip install pandas matplotlib jupyterlab ``` 2. **导入所需库**: 导入所需的库,比如pandas用于数据读取,matplotlib用于数据可视化: ```python import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ``` 3. **数据加载**: 使用`pd.read_csv()`函数加载"data.csv"文件: ```python data = pd.read_csv('data.csv') ``` 确保检查数据是否加载成功: ```python print(data.head()) # 查看数据前几行 ``` 4. **特征分析与散点图绘制**: 选择需要分析的自变量(假设为列X),将因变量设为Y: ```python X = data['your_variable_column'] Y = data['target_variable_column'] ``` 计算相关性并绘制散点图: ```python correlation = X.corr(Y) # 相关性计算 plt.scatter(X, Y) plt.xlabel('your_variable_column') plt.ylabel('target_variable_column') plt.title(f'Correlation Analysis - {your_name} (ID: {your_student_id})') plt.show() ``` 将`your_name`和`your_student_id`替换为你的真实姓名和学号。 5. **运行实验**: 运行上述代码即可完成数据加载和特征分析,Jupyter Notebook会显示结果或生成图表。 6. **保存与分享**: 最后,你可以通过点击菜单栏的“File”>“Save and Checkpoint”保存你的工作,以便后续查看或分享。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值