1. 题目
你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表
示如果要学习课程 ai 则 必须 先学习课程 bi 。
例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
提示:
1 <= numCourses <= 105
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i] 中的所有课程对 互不相同
Related Topics 深度优先搜索 广度优先搜索 图 拓扑排序
👍 827 👎 0
2. 题解
2.1 解法1: BFS
-
统计课程安排图中每个节点的入度,生成 入度表 indegrees 和 邻接表, 分别使用数组和 List<LIst<>> 来存储
-
借助一个队列 queue,将所有入度为 0 的节点入队。
-
当 queue 非空时,依次将队首节点出队,在课程安排图中删除此节点 curr:
a. 将此节点对应所有邻接节点即后驱结点 next 的入度 −1,即 indegrees[next] -= 1。
b. 当入度 −1后邻接节点 next 的入度为 0,说明 cur 所有的前驱节点已经被 “删除”,此时将 cur 入队。 -
在每次 curr 出队时,执行 numCourses–;
若整个课程安排图是有向无环图(即可以安排),则所有节点一定都入队并出队过,即完成拓扑排序。换个角度说,若课程安排图中存在环,一定有节点的入度始终不为 0。
因此,拓扑排序出队次数等于课程个数,返回 numCourses == 0 判断课程是否可以成功安排。
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
// 定义入度表, 邻接表, 队列
int[] inDegrees = new int[numCourses];
List<List<Integer>> lists = new ArrayList<>();
Queue<Integer> queue = new LinkedList<>();
// 初始化邻接表, , 第一维是第二维的前驱结点
for (int i = 0; i < numCourses; i++) {
lists.add(new ArrayList<>());
}
// 初始化入度表和邻接表
for (int[] temp : prerequisites) {
int curr = temp[1];
int next = temp[0];
inDegrees[next]++;
lists.get(curr).add(next);
}
// 将入度为 0 的结点加入队列
for (int i = 0; i < inDegrees.length; i++) {
if (inDegrees[i] == 0) {
queue.offer(i);
}
}
// 开始 BFS
while (!queue.isEmpty()) {
int curr = queue.poll();
numCourses--;
List<Integer> nextList = lists.get(curr);
// 遍历当前出队结点的所有后继结点, 将其入度减一, 同时判断若为 0 ,
// 表明可以到达该结点, 入队
for (int i = 0; i < nextList.size(); i++) {
int next = nextList.get(i);
inDegrees[next]--;
if (inDegrees[next] == 0) {
queue.offer(next);
}
}
}
return numCourses == 0;
}
}