算法---LeetCode 207. 课程表

1. 题目

原题链接

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表
示如果要学习课程 ai 则 必须 先学习课程 bi 。

例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。

提示:

1 <= numCourses <= 105
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i] 中的所有课程对 互不相同

Related Topics 深度优先搜索 广度优先搜索 图 拓扑排序
👍 827 👎 0

2. 题解

2.1 解法1: BFS

  1. 统计课程安排图中每个节点的入度,生成 入度表 indegrees 和 邻接表, 分别使用数组和 List<LIst<>> 来存储

  2. 借助一个队列 queue,将所有入度为 0 的节点入队。

  3. 当 queue 非空时,依次将队首节点出队,在课程安排图中删除此节点 curr:
    a. 将此节点对应所有邻接节点即后驱结点 next 的入度 −1,即 indegrees[next] -= 1。
    b. 当入度 −1后邻接节点 next 的入度为 0,说明 cur 所有的前驱节点已经被 “删除”,此时将 cur 入队。

  4. 在每次 curr 出队时,执行 numCourses–;
    若整个课程安排图是有向无环图(即可以安排),则所有节点一定都入队并出队过,即完成拓扑排序。换个角度说,若课程安排图中存在环,一定有节点的入度始终不为 0。
    因此,拓扑排序出队次数等于课程个数,返回 numCourses == 0 判断课程是否可以成功安排。

    class Solution {
        public boolean canFinish(int numCourses, int[][] prerequisites) {
            // 定义入度表, 邻接表, 队列
            int[] inDegrees = new int[numCourses];
            List<List<Integer>> lists = new ArrayList<>();
            Queue<Integer> queue = new LinkedList<>();
            // 初始化邻接表, , 第一维是第二维的前驱结点
            for (int i = 0; i < numCourses; i++) {
                lists.add(new ArrayList<>());
            }
            // 初始化入度表和邻接表
            for (int[] temp : prerequisites) {
                int curr = temp[1];
                int next = temp[0];
                inDegrees[next]++;
                lists.get(curr).add(next);
            }
            // 将入度为 0 的结点加入队列
            for (int i = 0; i < inDegrees.length; i++) {
                if (inDegrees[i] == 0) {
                    queue.offer(i);
                }
            }
            // 开始 BFS
            while (!queue.isEmpty()) {
                int curr = queue.poll();
                numCourses--;
                List<Integer> nextList = lists.get(curr);
                // 遍历当前出队结点的所有后继结点, 将其入度减一, 同时判断若为 0 ,
                // 表明可以到达该结点, 入队
                for (int i = 0; i < nextList.size(); i++) {
                    int next = nextList.get(i);
                    inDegrees[next]--;
                    if (inDegrees[next] == 0) {
                        queue.offer(next);
                    }
                }
            }
            return numCourses == 0;
        }
    }

参考:
课程表(拓扑排序:入度表BFS法 / DFS法,清晰图解)
「图解」拓扑排序 | 课程表问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值