引言
每当科研累了的时候,总想找一些有趣的AI项目上手试一下效果,感受最新的AI进展。前两天deep_live_cam又火了一圈,今天花了半天的时间进行了一次复现部署,快速给出它的介绍。
网上有很多集成包,但是大部分都是付费的骗子,实际上,由于这个包依赖较多,很难集成到一个程序就能搞定的地步。因此,本文主要按照顺序一步一步教会你在Win10/11下进行此程序。
该项目在github上已经开源,并且也给出了详细的指南。大家按照指南就可以运行。本文是一个复现指导。
1. 下载源文件
首先,我们准备环境,首先安装conda/mini-conda,获得anaconda prompt命令行。这里需要设置一下pip的镜像源,建议阿里云,比清华云镜像全一些。
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
然后安装git。
然后安装ffmpeg,这里我没有使用它官方的安装,而是采用了GPT-4o给我的意见:
在Windows上安装 ffmpeg
下载 ffmpeg:
前往 ffmpeg 的官网下载页面(https://ffmpeg.org/download.html)。
选择 Windows 版本,下载 ffmpeg-release-essentials 压缩包。
解压 ffmpeg:
将下载的压缩包解压到一个目录(例如 C:\ffmpeg)。
配置系统环境变量:
打开“系统属性” > “高级系统设置” > “环境变量”。
在“系统变量”中,找到 Path,并点击“编辑”。
点击“新建”,然后将 C:\ffmpeg\bin (根据你解压的目录设置)添加到 Path 中。
确定所有对话框,保存设置。
验证安装:
打开命令提示符,输入 ffmpeg -version。如果显示版本信息,说明安装成功。
这里选择:
需要注意的是,这里设置完环境变量后,需要重启命令行。
然后安装VS 2022 runtimes,这里下载运行后,不知道该安装什么,这里选择左上角第一个。
最后,克隆仓库:
git clone https://github.com/hacksider/Deep-Live-Cam.git
然后,还需要下载两个模型,并且将其放置在models
文件夹下:
GFPGANv1.4
inswapper_128_fp16.onnx
2. 安装依赖
首先创建conda的独立的python=3.10的环境:
conda create -n deep_live python=3.10
然后,进入deep_live_cam
的文件夹目录,安装依赖项:
pip install -r requirements.txt
这里安装容易因为网络问题,安装失败,建议多尝试几次。
如果你没有GPU的话,到此就结束了。然后直接运行python run.py
即可。但是建议还是需要显卡运行(这里我是4090,网上传闻最低6G显卡,那么60系以上的显卡都是支持的。)
如果需要安装CUDA的,还需要下面一道工序。
pip uninstall onnxruntime onnxruntime-gpu
pip install onnxruntime-gpu==1.16.3
然后运行就可以了:
python run.py --execution-provider cuda
运行完的界面如图所示:
首先点击Select a face,这里选择你想要克隆的对象照片,记住要有可以识别的脸,如果没有的话,容易出现报错。然后点击Live就可以了。如果显卡性能好的话,左边3个选项都可以开,能获得更高的视频性能。
3. 视频录制/直播
这里我们选择OBS就可以。至于更高级的直播教程我们这里就不赘述了,大家可以自己尝试。